PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review on the vortex tube geometrical affecting parameters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the increased usability energy separation devices that deals with compressed fluids such as the air, the water, and several Refrigerants are the Ranque-Hilsch vortex tube due to its simple operating principle to separate the compressed fluid to two hot and cold streams. The aim of the current paper is to review the Ranque-Hilsch tube flow separation most affecting geometrical parameters influencing the thermal separation efficiency in the literature that are conducted numerically and experimentally such as the number of injection nozzles and their cross-sectional shape including the rectangular and the trapezoidal for straight constant and converged nozzle profiles as well as the helical swept nozzle configurations like the nozzles aspect and the convergence ratios, the variation of the helical profile pitch angle with the increase in the nozzles number is also considered in the survey, further geometrical parameters survey is performed that includes the vortex tube orifice size to the nozzle’s length dimensional ratio and also the vortex tube configuration like the divergent and the convergent/divergent vortex tube shapes characteristics that includes the divergent angle and the throttling zone size in addition to the vortex tube length to the hot exit port size ratio and the optimum conical valve shape position and tapering angle.
Rocznik
Strony
69--88
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Rafiee S., Sadeghiazad M (2016). Three-Dimensional CFD Simulation of Fluid Flow inside a Vortex Tube on Basis of an Experimental Model- The Optimization of Vortex Chamber Radius Proceedings example. International Journal of Heat and Technology, Vol. 34, Issue 2, pp. 236-244
  • 2. Manimaran R. (2016). Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio. Energy, Vol. 107, pp. 17-28
  • 3. Fidus F., Mathew R., Nidhan A., Mohan S., J. Chandran (2017). Computational Analysis of Vortex Tube with Different Inlet Shapes. Global Research and Development Journal for Engineering, Vol. 2, Issue 6, pp. 115-123
  • 4. Kaushal P., Bux S., Paul, A. (2016). Performances analysis of vortex tube on CFD with straight and helical nozzle. International Journal of Engineering Sciences and Management, Vol. 6, Issue 2, pp. 161-174
  • 5. Kumar N., Malipatil A. S. (2014). CFD Analysis of Vortex Tube for Various Cross-Sectional Nozzles. International Journal for Research in Applied Science & Engineering Technology, Vol. 2, Issue X, pp. 291-297
  • 6. Ahmed H., Ahmed M. S., Attalla M., and El –Wafa A. A. (2017). An Experimental Study of Nozzle Number on Ranque Hilsch Counter-Flow Vortex Tube. Experimental Thermal and Fluid Science, Vol. 82, pp. 381-389
  • 7. Bazgir A., Heyderi A. (2018). CFD optimization of injection nozzles geometric dimensions of RHVT-machines in order to enhance the cooling capability. International Journal of Heat and Technology, Vol. 36, Issue 3, pp. 1081-1093
  • 8. Oh Y., Kim K. (2016). A Numerical Study on the Effect of Pitch Angle of Helical Nozzle on the Vortex TubePerformance Characteristics. The KSFM Journal of Fluid Machinery, Vol. 19, Issue 1, pp. 11-17
  • 9. Sadeghiazad M. (2017). Experimental and numerical study on the effect of the convergence angle, injection pressure and injection number on thermal performance of straight vortex tube. International Journal of Heat and Technology, Vol. 35, Issue 3, pp. 651-656
  • 10. Rafiee S., Sadeghiazad M. (2020). Experimental Analysis on Impact of Navigator's Angle on Velocimetry and Thermal Capability of RH-Vortex Tube. Applied Thermal Engineering, Vol. pp. 1-33.
  • 11. Shamsoddini R.,Abolpour B. (2018). A geometric model for a vortex tube based on numerical analysis to reduce the effect of nozzle number. International Journal of Refrigeration, Vol. 94, pp. 49-58
  • 12. Abdelghany S., Kandil H. (2018). Effect of Geometrical Parameters on the Coefficient of Performance of the Ranque-Hilsch Vortex Tube. Open Access Library Journal, Vol. 5, pp. 1-17
  • 13. Suhaimi M., Yusof M. (2018). The Effect of Tube Length and Cold Exit Diameter on The Cold Flow Temperatureof Vortex Tube Using High Temperature Working Gas. 1st International Postgraduate Conference on Mechanical Engineering, Malaysia
  • 14. Abd Rahman Kh., Valliyappan W., Natarajan D., Istihat Y. (2017). The Effect of Orifice Diameter to the Acoustic Signal at the Hot Tube of a Ranque-Hilsch Vortex Tube. Journal of Mechanical Engineering, Vol. 2, Issue 1, pp. 29-38
  • 15. Moraveji A., Toghraie D. (2017). Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters. International Journal of Heat and Mass Transfer, Vol. 113, pp. 432-443
  • 16. Hamdan M., Al-Omari S., Oweimer A. (2018). Experimental study of vortex tube energy separation under different tube design. Experimental Thermal and Fluid Science, Vol. 91, pp. 306-311
  • 17. Bazgir A., Heyderi A., Nabhani N. (2019). Investigation of the thermal separation in a counter-flow Ranque-Hilsch vortex tube with regard to different fin geometries located inside the cold tube length. International Communications in Heat and Mass Transfer, Vol. 108, pp. 1-25
  • 18. Branco F. P., Buchelt E. D., Barbosa F. M., Rosa B. P., Laporte D. J. (2019). Design and study of dimensional parameters influence on vortex tube behavior. Engenharia Térmica, Vol. 18, Issue 1, pp. 13-18
  • 19. Zangana L., Barwari R. (2020). The effect of convergent-divergent tube on the cooling capacity of vortex tube: An experimental and numerical study. Alexandria Engineering Journal, Vol. 59, Issue 1, pp. 239-246
  • 20. Rafiee S., Sadeghiazad M., Mostafavinia N. (2015). Experimental and Numerical Investigation on Effect of Convergent Angle and Cold Orifice Diameter on Thermal Performance of Convergent Vortex Tube. Journal of Thermal Science and Engineering Applications, Vol. 7, pp.1-13
  • 21. Li R., Hu Z., Gao Y. (2019). Numerical Simulation of Energy Separation in a Vortex Tube with Different Vane Number Rectifiers. The 31st Chinese Control and Decision Conference, pp. 5079-5083
  • 22. Rafiee S., Ayenehpour S., Sadeghiazad M. (2016). A study on the optimization of the angle of curvature for a Ranque–Hilsch vortex tube, using both experimental and full Reynolds stress turbulence numerical modelling. Heat Mass Transfer, Vol. 52, pp. 337-350
  • 23. Pourmahmoud N., Azar F. S., Hassanzadeh A. (2014). Numerical simulation of secondary vortex chamber effect on the cooling capacity enhancement of vortex tube. Heat Mass Transfer, Vol
  • 24. Skye H.M., Nellis G.F., Klein S.A. (2006). Comparison of CFD analysis to empirical data in a commercial vortex tube. International Journal of Refrigeration, Vol. 29, pp.71-80
  • 25. Sadi M., Farzaneh-Gord M. (2014). Introduction of Annular Vortex Tube and experimental comparison with Ranque-Hilsch Vortex Tube. International Journal of Refrigeration, Vol. 46, pp. 141-151
  • 26. Ismail N., Wisnoe W., M. Remeli (2014). Experimental Investigation of Orifice Diameter, Swirl Generator, and Conical Valve Shape to the Cooling Performance of Ranque-Hilsch Vortex Tube. Applied Mechanics and Materials, Vol. 510, pp. 174-178
  • 27. Abdul Qyyum M., Noon A., Wei F., Le M. (2019). Vortex tube shape optimization for hot control valves through computational fluid dynamics. International Journal of Refrigeration, Vol. 102, pp. 151-158
  • 28. Devade K., Pise A. (2016). Exergy analysis of a counter flow Ranque–Hilsch vortex tube for different cold orifice diameters, L/D ratios and exit valve angles. Heat Mass Transfer, Vol. 53, Issue 6, pp. 2017-2029
  • 29. Yadav G. M. P., Reddy P. M., Gowd B. U. M. (2016). Effect of end control plugs on the performance of vortex tube with dual forced vortex flow. Journal of Thermal Engineering, Vol. 2, Issue 4, pp. 871-881
  • 30. Rafiee S., Sadeghiazad M. (2014). Three-dimensional and experimental investigation on the effect of cone length of throttle valve on thermal performance of a vortex tube using k-Ɛ turbulence model. Applied Thermal Engineering, Vol. 66, pp. 65-74
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65fde81e-9754-461c-8d2a-252d1e1ba482
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.