PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of structural controls on the drainage system of north‑western Nigeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravity and magnetic field datasets coupled with Shuttle Radar Topography Mission (SRTM) digital elevation data over north-western Nigeria were interpreted to delineate subsurface and surface structures, and determine their influence on the drainage system within Sokoto Basin and its surrounding environment. The Improved Logistic Filter and Euler Deconvolution techniques were applied to the residual fields of the gravity and magnetic data to delineate lineaments and their depths of occurrence, respectively. The lineaments mapped from gravity and magnetic data revealed a major N–S and NE–SW, and W–E trend respectively and in several cases were aligned with surface lineaments from the SRTM digital elevation data. The results revealed that the drainage channel of Rivers Niger, Sokoto, Rima, Zamfara, Ka, Kasanu, Gagere, Kuromoni, Malendo and Kontagora are closely aligned with several lineaments emanating from the underlying basement. The 2-D forward models confirmed the presence of these lineaments and delineated intrusives within Sokoto Basin. This study concluded that the drainage system of north-western Nigeria is structurally controlled.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1747--1762
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
  • Ondo State Ministry of Education, Science and Technology, Akure, Nigeria
  • Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
  • Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
  • Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
Bibliografia
  • 1. Abdullahi SA, Muhammed MM, Adeogun BK, Mohammed IU (2014) Assessment of water availability in the Sokoto Rima River Basin. Resour Environ 4(5):220–233. https://doi.org/10.5923/j.re.20140405.03
  • 2. Adiri Z, El Harti A, Jellouli A, Lhissou R, Maacha L, Azmi M, Zouhair M, Bachaoui EM (2017) Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: a case study of Sidi Flah-Bouskour inlier. Moroccan Anti Atlas Adv Space Res 60:2355–2367
  • 3. Ajama OD, Awoyemi MO, Arogundade AB, Dasho OA, Falade SC, Hammed S, Shode OH (2021) Deep crustal network of the equatorial atlantic fracture zones in southern Nigeria. Res Geophys Sci 8:100027. https://doi.org/10.1016/j.ringps.2021.100027
  • 4. Arogundade AB, Awoyemi MO, Hammed OS, Falade SC, Ajama OD (2022) Structural investigation of Zungeru-Kalangai fault zone, Nigeria using aeromagnetic and remote sensing data. Heliyon 8(3):e09055
  • 5. Awoyemi MO, Ajama OD, Hammed OS, Arogundade AB, Falade S.C. (2018) Geophysical mapping of buried faults in parts of Bida Basin, North Central Nigeria. Geophys Prospect 66:40–54. https://doi.org/10.1111/1365-2478.12575
  • 6. Balogun OB (2019) Tectonic and structural analysis of the migmatitegneiss-quartzite complex of Ilorin area from aeromagnetic data. NRIAG J Astron Geophys 8(1):22–33. https://doi.org/10.1080/20909977.2019.1615795
  • 7. Chardon D, Grimaud J-L, Rouby D, Beauvais A, Christophoul F (2016) Stabilization of large drainage basins over geological time scales: cenozoic West Africa, hot spot swell growth, and the Niger River. Geochem Geophys GeosysT 17:1164–1181. https://doi.org/10.1002/2015GC006169
  • 8. Cooper GRJ, Cowan DR (2006) Enhancing potential field data using filters based on the local phase. Comput Geosci 32:1585–1591. https://doi.org/10.1016/j.cageo.2006.02.016
  • 9. Cordell L, Grauch VJS (1985) Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In: Hinze WJ (ed) The utility of regional gravity and magnetic maps, 1st edn. Society of Exploration Geophysicists, Tulsa, Oklahoma, pp 181–197. https://doi.org/10.1190/1.0931830346.ch16
  • 10. Dasho OA, Ariyibi EA, Adebayo AS, Falade SC (2020) Seismotectonic lineament mapping over parts of Togo–Benin–Nigeria Shield. NRIAG J Astron Geophys 9(1):539–547. https://doi.org/10.1080/20909977.2020.1797427
  • 11. Ehirim CO, Ebeniro JO (2005) Tectonic trends delineated from drainage lineament analysis and azimuthal resistivity survey: a case study of S E Nigeria Gully Erosion Belt. Glob J Geo Sci 4(1):21–28. https://doi.org/10.4314/gjgs.v4i1.18729
  • 12. Fullea J, Fernandez M, Zeyen H (2008) FA2BOUG-A FORTRAN 90 code to compute Bouguer gravity anomalies from gridded free-air anomalies, application to the Atlantic-Mediterranean transition zone. Comput Geosci 34(12):1665–1681
  • 13. Holden MJ, Green J (1960) The hydrology and plankton of the River Sokoto. J Anim Ecol 29(1):65. https://doi.org/10.2307/2271
  • 14. Kogbe CA (1981) Cretaceous and tertiary of the Iullemmeden Basin in Nigeria (West Africa). Cretac Res 2(2):129–186. https://doi.org/10.1016/0195-6671(81)90007-0
  • 15. Lawali S, Salako KA, Bonde DS (2020) Euler deconvolution and source parameter imaging of aeromagnetic data to delineate sedimentary thicknessover lower part of Sokoto Basin, Northwestern Nigeria. J Appl Geol Geophys 8(2):58–64. https://doi.org/10.9790/0990-0802015864
  • 16. Meyer B, Saltus R, Chulliat A (2017) EMAG2V3: earth magnetic anomaly Grid (2- arc-minute resolution). Version 3. NOAA national centers for environmental information. https://doi.org/10.7289/V5H70CVX. Accessed 10 Dec 2019
  • 17. National Oceanic and Atmospheric Administration. https://www.ngdc.noaa.gov/geomag/emag2.html. Accessed 09 Jan 2022
  • 18. Nigerian Geological Survey Agency (2006). Lineament map of Nigeria. https://ngsa.gov.ng/wp-content/uploads/2020/06/Linearment-map-of-Nigeria.pdf. Accessed 05 Nov 2021
  • 19. Nwajide CS (2013) Geology of Nigeria’s sedimentary basins. CSS Bookshop ltd
  • 20. Nwankwo LI, Shehu AT (2015) Evaluation of Curie point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2015.09.017
  • 21. Obaje NG (2011) Geology and mineral resources of Nigeria. Econ Geol 106(3):523. https://doi.org/10.2113/econgeo.106.3.523
  • 22. Obaje NG, Aduku M, Yusuf I (2013) The Sokoto Basin of northwestern Nigeria: a preliminary assessment of the hydrocarbon prospectivity. Petrol Technol Dev J 3(2):66–80
  • 23. Obaje NG, Zaki Faruq U, Bomai A, Dabai Moses S, Ali M, Adamu S, Essien A, Lamorde U, Mohammed Umar U, Ozoji T, Okonkwo P, Adamu L, Idris-Nda A (2020) A short note on the petroleum potential of the Sokoto Basin in North-western Nigeria. Petrol Sci Eng 4(1):34. https://doi.org/10.11648/j.pse.20200401.14
  • 24. Okon EE, Ikeh JO, Offodile CJ (2021) Near - surface characterization of sediments of the Sokoto group exposed around Wamakko area, Northwestern Nigeria: an integrated approach. Geol Ecol Landsc 5(2):81–93. https://doi.org/10.1080/24749508.2020.1833628
  • 25. Oksum E, Le DV, Vu MD, Nguyen THT, Pham LT (2021) A novel approach based on the fast sigmoid function for interpretation of potential field data. Bull Geophys Oceanogr 62(3):543–556. https://doi.org/10.4430/bgta0348
  • 26. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM 2008). J Geophys Res 117(B4):B04406. https://doi.org/10.1029/2011JB008916
  • 27. Pavlis NK, Holmes SA, Kenyon SC, Factor, JK (2008) An earth gravitational model (EGM 2008) to degree 2160. In: Presented at the EGU general assembly. Vienna, Austria, pp 13–18
  • 28. Pham LT, Oksum E, Do TD, Le-Huy M (2018) New method for edges detection of magnetic sources using logistic function. Geofizicheskiy Zhurnal 40(6):127–135
  • 29. Pham LT, Vu TV, Le-Thi S, Trinh PT (2020) Enhancement of potential field source boundaries using an improved logistic filter. Pure Appl Geophys 177:5237–5249
  • 30. Pham LT, Oksum E, Do TD, Vu MD (2021) Comparison of different approaches of computing the tilt angle of the total horizontal gradient and tilt angle of the analytic signal amplitude for detecting source edges. Bull Min Res Exp 2021(165):53–62. https://doi.org/10.19111/bulletinofmre.746858
  • 31. Phillips JD, Hansen RO, Blakely RJ (2007) The use of curvature in potential-field interpretation. Explor Geophys 38:111–119
  • 32. Radhakrishna IV, Krishnamacharyulu SKG (1990) Polyfit: a Fortran 77 program to fit a polynomial of any order to potential field anomalies. J Assoc Explor Geophys 11:99–105
  • 33. Roest WRJ, Verhoef J, Pilkington M (1992) Magnetic interpretation using the 3-D analytic signal. Geophysics 57(1):116–125. https://doi.org/10.1190/1.1443174
  • 34. Shebl A, Csàmer A (2021) Reappraisal of DEMs, Radar and optical datasets in lineaments extraction with emphasis on the spatial context. Remote Sens Appl: Soc Environ 24:100617
  • 35. Udoh RK (1970) Geographical regions of Nigeria. Heinemann
  • 36. Zareie V, Moghadam RH (2019) The application of theta method to potential field gradient tensor data for edge detection of complex geological structures. Pure Appl Geophys 176:4983–5001. https://doi.org/10.1007/s00024-019-02226-z
  • 37. Zernitz ER (1932) Drainage patterns and their significance. J Geol 4(6):498–521
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65f89398-3ac7-4fa9-9371-00940f7d828e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.