PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A robust smooth controller for a unicycle-like robot

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a stabilizer dedicated for a unicycle-like robot is considered. The proposed smooth control law ensures the global boundedness of position and orientation trajectories to a neighbourhood of the desired point with an arbitrarily selected radius and it is robust to bounded additive measurement noises. The controller consists of a smooth hybrid navigation algorithm and a smooth feedback based on the transverse function approach. The stability proof, simulation and experimental results illustrating properties of the algorithm are discussed.
Rocznik
Strony
155--183
Opis fizyczny
Bibliogr. 27 poz., rys., wykr., wzory
Twórcy
autor
  • Poznań University of Technology, Institute of Automation and Robotics, ul. Piotrowo 3a 60-965 Poznań, Poland
Bibliografia
  • [1] M. K. Bennani and P. Rouchon: Robust stabilization of flat and chained systems. In Proceedings of the Third European Control Conference, pp. 2642-2646, Rome, 1995.
  • [2] R. W. Brockett: Asymptotic stability and feedback stabilization. In R. W. Brockett, R. S. Millman, and H. J. Sussmann, editors, Differential Geometric Control Theory, pp. 181-191. Birkhäuser, Boston, 1983.
  • [3] I. Dulęba: Algorithms of motion planning for nonholonomic robots. Oficyna Wydawnicza Politechniki Wrocławskiej,Wrocław, 1998.
  • [4] L. Gurvits and Z. X. Li: Smooth time-periodic feedback solutions for nonholonomic motion planning. In Nonholonomic motion planning, pp. 53-108. Kluwer, 1993.
  • [5] J. P. Hespanha, D. Liberzon and A. S. Morse: Logic-based switching control of a nonholonomic system with parametric modeling uncertainty. Systems and Control Letters, 38 (1999), 167-177.
  • [6] B. Jakubczyk: Nonholonomic path following with fastly oscillating controls. In Proc. 9th Int. Workshop on Robot Motion and Control (RoMoCo), pp. 99-103, 2013.
  • [7] Z.-P. Jiang: Robust exponential regulation of nonholonomic systems with uncertainties. Automatica, 36 (2000), 189-209.
  • [8] K. Kozłowski, W. Kowalczyk, B. Krysiak, M. Kiełczewski and T. Jedwabny: Modular architecture of the multi-robot system for teleoperation and formation control purposes. In Proc. 9th Int. Workshop Robot Motion and Control (RoMoCo), pp. 19–24, Wąsowo, Poland, July 2013.
  • [9] G. Lafferriere and H. Sussmann: Motion planning for controllable systems without drift. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1148-1153, 1991.
  • [10] D. A. Lizárraga, P. Morin and C. Samson: Non-robustness of continuous homogeneous stabilizers for affine control systems. In Proc. 37th IEEE Conf. on Decision and Control, pp. 855-860, Phoenix, USA, 1999.
  • [11] G. A. D. Lopes and D. E. Koditschek: Level sets and stable manifold approximations for perceptually driven nonholonomically constrained navigation. In Proc. IEEE/RJS International Conference on Robotics and Systems, pp. 1481-1486, 2004.
  • [12] M. Michałek and K. Kozłowski: Vector-Field-Orientation feedback controlmethod for a differentially driven vehicle. IEEE Trans. Control Syst. Technol., 18(1) (2010), 45-65.
  • [13] M. Michałek and D. Pazderski: A hybrid robust stabilizer for mobile robot with (2,0) kinematics. In Prace naukowe, Elektronika z. 175, pp. 391-400. Oficyna Wydawnicza PolitechnikiWarszawskiej, 2010.
  • [14] P. Morin and C. Samson: Robust stabilization of driftless systems with hybrid open-loop/feedback control. In Proceedings of the American Control Conference, pp. 3929-3933, Chicago, Illinois, 2000.
  • [15] P. Morin and C. Samson: Practical stabilization of driftless systems on Lie groups: the transverse function approach. IEEE Trans. Autom. Control, 48(9) (2003), 1496-1508.
  • [16] P. Morin and C. Samson: Trajectory tracking for non-holonomic vehicles: overview and case study. In Proceedings of the 4th International Workshop On Robot Motion and Control, pp. 139-153, Puszczykowo, 2004.
  • [17] P. Morin and C. Samson: Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans. Robot., 25(5) (2009), 1058-1073.
  • [18] G. Oriolo, A. De Luca and M. Venditteli: WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans. Control Syst. Technol., 10(6) (2002), 835-852.
  • [19] D. Panagou, H. G. Tanner and K. J. Kyriakopoulos: Control design for a class of nonholonomic systems via reference vector fields and output regulation. J. Dyn. Syst-T ASME, 137(8) (2015), 378-400.
  • [20] D. Pazderski: Application of transverse functions to control differentially driven wheeled robots using velocity fields. Bull. Pol. Ac.: Tech., 64(4) (2016), 831-851.
  • [21] D. Pazderski: Waypoint following for differentially driven wheeled robots with limited velocity perturbations. Asymptotic and practical stabilization using transverse function approach. J. Intell. Robotic Syst., 85(3) (2017), 55-575.
  • [22] D. Pazderski and K. Kozłowski: Motion control of a car-like vehicle with front driving wheels using an approximate decoupling based on the transverse function approach. In Proc. 11th Int. Workshop on Robot Motion and Control (RoMoCo), pp. 154-159, 2017.
  • [23] D. Pazderski, B. Krysiak and K. Kozłowski: A comparison study of discontinuous control algorithms for three-link nonholonomic manipulator. In Lecture Notes in Control and Inform. Sci. Robot Motion Control: Recent Developments, volume 396, pp. 35-44. Springer-Verlag, Berlin Heidenberg, 2012.
  • [24] J.-B. Pomet, B. Thuilot, G. Bastin and G. Campion: A hybrid strategy for the feedback stabilization of nonholonomic mobile robots. In Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 129-134, Nice, France, 1992.
  • [25] C. Prieur and A. Astolfi: Robust stabilization of chained systems via hybrid control. IEEE Transactions on Automatic Control, 48(10) (2003), 1768-1772.
  • [26] E. Valtolina and A. Astolfi: Local robust regulation of chained systems. Systems and Control Letters, 49 (2003), 231-238.
  • [27] A. Zuyev: Exponential stabilization of nonholonomic systems by means of oscillating controls. SIAM J. Control Optim., 54(3) (2016), 1678-1696.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65f1f089-0265-4446-8f53-41543c96dcbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.