Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A great circle route (GCR) is the shortest route on a spherical earth model. Do we have a visual diagram to handle the shortest route? In this paper, a graphical method (GM) is proposed to solve the GCR problems based on the celestial meridian diagram (CMD) in celestial navigation. Unlike developed algebraic methods, the GM is a geometric method. Appling computer software to graph, the GM does not use any equations but is as accurate as using algebraic methods. In addition, the GM, which emphasizes the rotational surface, can depict a GCR and judge its benefit.
Czasopismo
Rocznik
Tom
Strony
12--21
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Department of Civil Engineering, National Taiwan University, Taiwan
autor
- Merchant Marine Department, National Taiwan Ocean University, Taiwan
autor
- Department of Civil Engineering National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
Bibliografia
- 1. Bowditch, N.: The American Practical Navigator, 2002 Bicentennial Edition, National Imagery and Mapping Agency, Bethesda, Maryland, 2002.
- 2. Chen, C. L.: A Systematic Approach for Solving the Great Circle Track Problems Based on Vector Algebra, Polish Maritime Research, 23(2), pp. 3-13, 2016.
- 3. Chen, C. L., Hsieh, T. H. and Hsu, T. P.: A novel approach to solve the great circle track based on rotation transformation, Journal of Marine Science and Technology, 23(1), pp. 13-20, 2015.
- 4. Chen, C. L., Hsu, T. P. and Chang, J. R.: A novel approach to great circle sailings: the great circle equation, The Journal of Navigation, 57(2), pp. 311-320, 2004.
- 5. Chen, C. L., Liu, P. F. and Gong, W. T.: A simple approach to great circle sailing: the COFI method, The Journal of Navigation, 67(3), pp. 403-418, 2014.
- 6. Chiang, C. H. and Tseng, A. Y.: Some ideas on calculating great circle sailings, The Journal of Navigation, 45(1), pp. 136-138, 1992.
- 7. Cutler, T. J.: Dutton’s Nautical Navigation, Fifteenth Edition, Naval Institute Press, Maryland, 2004.
- 8. Earle, M. A.: Vector solutions for great circle navigation, The Journal of Navigation, 58(3), pp. 451-457, 2005.
- 9. Miller, A. R., Moskowitz, I. S. and Simmen, J.: Traveling on the curved earth, NAVIGATION, Journal of the Institute of Navigation, 38(1), pp. 71-78, 1991.
- 10. Nastro, V. and Tancredi, U.: Great circle navigation with vectorial methods, The Journal of Navigation, 63(3), pp. 557-563, 2010.
- 11. Royal Navy: The Admiralty Manual of Navigation: The Principles of Navigation, Volume 1, Tenth Edition, Nautical Institute, London, 2008.
- 12. Sa, S. H.: Navigation, Volume 2, Wensheng Book Store, Taiwan, 2010. (In Chinese)
- 13. Tseng, W. K. and Chang, W. J.: Analogues between 2D linear equations and great circle sailing, The Journal of Navigation, 67(1), pp. 101-112, 2014.
- 14. UNCTAD: Review of Maritime Transport, Geneva: United Nations, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65ea8b37-ccb1-4bd7-84b0-49cfa9634d71