Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we concern by a very general cubic integral equation and we prove that this equation has a solution in C[0; 1]. We apply the measure of noncompactness introduced by Banaś and Olszowy and Darbo's fixed point theorem to establish the proof of our main result.
Czasopismo
Rocznik
Tom
Strony
29--38
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
autor
- Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
autor
- Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
Bibliografia
- [1] J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl. 3 (1981) 251-263.
- [2] J. Appell, C. Chen, How to solve Hammerstein equations, J. Integral Equations Appl. 18 (2006) 287-296.
- [3] H.K. Awad, M.A. Darwish, On monotonic solutions of a cubic Urysohn Integral equation with linear modification of the argument, Adv. Dyn. Syst. Appl. 13 (2018) 91-99.
- [4] J. Banaś, K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics 60 Marcel Dekker, New York, 1980.
- [5] J. Banaś, L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001) 13-23.
- [6] M. Benchohra, M.A. Darwish, On unique solvability of quadratic integral equations with linear modification of the argument, Miskolc Math. Notes 10 (2009) 3-10.
- [7] T.A. Burton, Volterra Integral and Differential Equations, Academic Press, New York, 1983.
- [8] K.M. Case, P.F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA, 1967.
- [9] J. Caballero, D. O'Regan, K. Sadarangani, On nondecreasing solutions of cubic integral equations of Urysohn type, Comment. Math. (Prace Mat.) 44 (2004) 39-53.
- [10] M.A. Darwish, On integral equations of Urysohn-Volterra type, Appl. Math. Comput. 136 (2003) 93-98.
- [11] M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005) 112-119.
- [12] M.A. Darwish, On monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl. 17 (2008) 539-549.
- [13] K. Deimling, Nonlinear Fuctional Analysis, Springer-Verlag, Berlin, 1985.
- [14] W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation, Appl. Math. Comput. 145 (2003) 487-493.
- [15] W.G. El-Sayed, B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comput. Math. Appl. 51 (2006) 1065-1074.
- [16] D. Franco, G. Infante, D. O'Regan, Positive and nontrivial solutions for the Urysohn integral equation, Acta Math. Sin. (Engl. Ser.) 22 (2006) 1745-1750.
- [17] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [18] S. Hu, M. Khavani, W. Zhuang, Integral equations arrising in the kinetic theory of gases, Appl. Anal. 34 (1989) 261-266.
- [19] C.T. Kelly, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Eq. 4 (1982) 221-237.
- [20] D. O'Regan, M. Meehan, Existence Theory for Nonlinear Integral and Integro-differential Equations, Kluwer Academic Publishers, Dordrecht, 1998.
- [21] M. Väth, Volterra and Integral Equations of Vector Functions, Monographs and Textbooks in Pure and Applied Mathematics 224, Marcel Dekker, Inc., New York, 2000.
- [22] P.P. Zabrejko et al., Integral Equations - a Reference Text, Noordhoff International Publishing, The Netherlands 1975 (Russian edition: Nauka, Moscow, 1968).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65e63daf-fb07-4ac7-8928-006e6e74e5d0