Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrical Discharge Machining (EDM) is a modern technique extensively utilized across various industries to eliminate material using electrical discharges. Within the realm of EDM, a key obstacle involves identifying appropriate electrode materials capable of withstanding elevated temperatures and effectively eroding material from workpieces. Composite electrodes are becoming more commonly employed to tackle this issue, as a result of their exceptional electrical and thermal properties. The performance of a composite electrode that has been specifically improvement with (Cu-3%Cr-0.5%WC-1%Ag) is evaluated in this study using the stir casting technique. The investigation utilized stainless steel 304L as the workpiece material, and the performance of the composite electrode was evaluated against traditional pure copper electrodes. The results indicate that composite electrodes can decrease electrode wear and increase machining efficiency. The tool wear rate (TWR) for the composite electrode decreased to 0.0398 gm/min with a current of 10 A and a pulse-on time of 50 µs, along with a pulse-off time of 50 µs. In contrast, under the same conditions, the copper tool exhibited a TWR of 0.514 gm/min. The composite electrode achieved the highest material removal rate (MRR) at 59.7917 mm3/min, surpassing the copper electrode which had the lowest MRR at 54.5588 mm3/min. Additionally, the Surface Roughness (SR) of the composite electrode was measured at 3.253 μm, lower than the 3.967 μm of the pure copper electrode. These findings suggest that composite electrodes could serve as a viable substitute for conventional EDM electrodes.
Wydawca
Czasopismo
Rocznik
Tom
Strony
136--143
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Production Engineering and Metallurgy University of Technology Baghdad, Iraq
autor
- Production Engineering and Metallurgy University of Technology Baghdad, Iraq
Bibliografia
- [1] N. Mohri, T. Tani. Recent evolution of electrical discharge machining. In: Menz W, Dimov S, Fillon BBT-4M 2006-SIC on M-MMM, editors. Oxford: Elsevier; 2006. p. 23–6. Available from: https://www.sciencedirect.com/science/article/pii/B9780080452630500064.
- [2] Y. Laibi, S. Shather. Effect of SiC-Cu Electrode on Material Removal Rate, Tool Wear and Surface Roughness in EDM Process. Eng Technol J. 2020; 38(9):1406–13.
- [3] H. El-Hofy. Advanced machining processes: nontraditional and hybrid machining processes. McGraw-Hil. McGraw-Hill Professional. New York; 2005. 115–140 p.
- [4] S. Anjum, M. Shah, N.A. Anjum, S. Mehmood, W. Anwar, “Machining and Surface Characteristics of AISI 304L After Electric Discharge Machining for Copper and Graphite Electrodes in Different Dielectric Liquids,” Eng. Technol. Appl. Sci. Res., vol. 7, no. 4, pp. 1765–1770, 2017, doi: 10.48084/etasr.1250.
- [5] A.A. Khleifa, O.S. Sabbar. Electrode Wear Evaluation in E.D.M Process. Eng Technol J [Internet]. 2019; 37(2C):252–7. Available from: https://etj.uotechnology.edu.iq/article_168971.html.
- [6] Z. Gulbinowicz, O. Goroch, P. Skoczylas. Mathematical Modeling of Material Erosion During the Electrical Discharge. Adv Sci Technol Res J. 2020; 14(2):27–33.
- [7] J.E. Abu Qudeiri, A. Ziout, A-H. Mourad, M. Abidi, A. Elkaseer. Principles and Characteristics of Different EDM Processes in Machining Tool and Die Steels. Appl Sci. 2020 Mar 19; 10:2082.
- [8] J. Rajaguru, P. Kumar, N. Arunachalam. Novel carbon nanotubes reinforced copper composite electrode for improved performance of electric discharge machining. Mater Lett [Internet]. 2022; 307:131063. Available from:https://www.sciencedirect.com/science/article/pii/S0167577X21017614.
- [9] S. Shather, A. Ibrahim, Z. Mohsein, O. Hassoon. Enhancement of EDM Performance by Using Copper-Silver Composite Electrode. Eng Technol J. 2020; 38(9):1352–8.
- [10] N. Beri, S. Maheshwari, C. Sharma, A. Kumar. Surface Quality Modification Using Powder Metallurgy Processed CuW Electrode During Electric Discharge Machining of Inconel 718. Procedia Mater Sci. 2014; 5:2629–34.
- [11] P. Balasubramanian, T. Senthilvelan. Optimization of Machining Parameters in EDM Process Using Cast and Sintered Copper Electrodes. Procedia Mater Sci [Internet]. 2014; 6(Icmpc):1292–302. Available from: http://dx.doi.org/10.1016/j.mspro.2014.07.108.
- [12] Narinder Singh Jassal Sanjeev Verma Kashidas Chattopadhyay B.S. Pabla. Surface Modification of Aluminium Using Pm Electrode on Edm. Adv Mater Manuf Technol. 2015; 4(2277):91–5.
- [13] S. Kumar, A. Batish, R. Singh, A. Bhattacharya. Effect of cryogenically treated copper-tungsten electrode on tool wear rate during electro-discharge machining of Ti-5Al-2.5Sn alloy. Wear [Internet]. 2017; 386–387:223–9. Available from: https://www.sciencedirect.com/science/article/pii/S0043164817301850.
- [14] L. Li, L. Feng, X. Bai, Li ZY. Surface characteristics of Ti-6Al-4V alloy by EDM with Cu-SiC composite electrode. Appl Surf Sci [Internet]. 2016; 388:546-50. Available from:https://www.sciencedirect.com/science/article/pii/S0169433215025647.
- [15] M. Piyar Uddin, A. Majumder, J. Deb Barma, P. Kumar. Study of the performance of Cu-Gr composite tool during EDM of AISI 1020 mild steel. Mater Today Proc [Internet]. 2022; 62:3886–90. Available from: https://www.sciencedirect.com/science/article/pii/S2214785322027171.
- [16] V.R. Chundru, R. Koona, S.R. Pujari. Surface Modification of Ti6Al4V Alloy Using EDMed Electrode Made with Nano- and Micron-Sized TiC/Cu Powder Particles. Arab J Sci Eng [Internet]. 2019; 44(2):1425–36. Available from: https://doi.org/10.1007/s13369-018-3561-z.
- [17] R. Çakıroğlu, M. Günay, “Comprehensive analysis of material removal rate, tool wear and surface roughness in electrical discharge turning of L2 tool steel,” J. Mater. Res. Technol., vol. 9, no. 4, pp. 7305–7317, 2020, doi: https://doi.org/10.1016/j.jmrt.2020.04.060.
- [18] S.K. Shather, S.H. Aghdeab, W.S. Khudhier. Enhancement the Thermal Effects Produce by EDM Using Hybrid Machining. In: IOP Conference Series: Materials Science and Engineering. 2019.
- [19] M.J. Islam, Y. Zhang, L. Zhao, W. Yang, H. Bian. Material wear of the tool electrode and metal workpiece in electrochemical discharge machining. Wear [Internet]. 2022; 500–501:204346. Available from: https://www.sciencedirect.com/science/article/pii/S0043164822001107.
- [20] R. Arshad, S. Mehmood, M. Shah, M. Imran, F. Qayyum. Effect of Distilled Water and Kerosene as Dielectrics on Machining Rate and Surface Morphology of Al-6061 During Electricdischarge Machining. Adv Sci Technol Res J. 2019;13(3):162–9.
- [21] A. Alinaghizadeh, M. Hadad, and B. Azarhoushang, “Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters,” 2023.
- [22] V. Lalwani, P. Sharma, C.I. Pruncu, and D.R. Unune, “Response surface methodology and artificial neural network-based models for predicting performance of wire electrical discharge machining of inconel 718 alloy,” J. Manuf. Mater. Process., vol. 4, no. 2, 2020, doi: 10.3390/jmmp4020044.
- [23] X. Zhang, M. He, Y. Zhan, W. Yang, K. Wu. Microstructure, Mechanical and Electrical Properties of Hybrid Copper Matrix Composites with Fe Microspheres and rGO Nanosheets. Molecules. 2022;27(19).
- [24] S.K. Rajiv, “Parametric optimization of process parameters for Electric discharge Machining of Tungsten carbide (93% WC and 7%Co),” Prod. Eng. Arch., vol. 26, no. 4, pp. 154–161, 2020, doi: 10.30657/pea.2020.26.28.
- [25] M.A. Younis, M.S. Abbas, M.A. Gouda, F.H. Mahmoud, and S.A. Abd Allah, “Effect of electrode material on electrical discharge machining of tool steel surface,” Ain Shams Eng. J., vol. 6, no. 3, pp. 977–986, 2015, doi: https://doi.org/10.1016/j.asej.2015.02.001.
- [26] D. Doreswamy et al., “Optimization and modeling of material removal rate in wire-edm of silicon particle reinforced al6061 composite,” Materials (Basel)., vol. 14, no. 21, pp. 1–18, 2021, doi: 10.3390/ma14216420.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65e35465-01a2-4208-a695-5166bb4d9944
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.