Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Unmanned Aerial Vehicles (UAVs), also referred to as drones, are increasingly utilized in sectors such as surveillance, transportation, and entertainment. The global UAV market, projected to escalate to USD 70.7 billion by 2026, demonstrates a significant growth trajectory. However, alongside their functional utility, UAVs present substantial risk factors, notably in the domain of collisions with humans and other entities. These collision events are categorizable by operational context (military versus civilian) and flight phase (e.g., takeoff, landing). Contributory factors to these occurrences include operator errors, equipment malfunctions, and prevailing environmental conditions. Incidents involving human-UAV collisions are of particular concern. The severity of impact is contingent upon UAV specifications and the conditions of operation. Predominantly accidental, these incidents accentuate escalating safety concerns in the burgeoning UAV sector. This manuscript endeavors to examine the risks inherent in UAV operations, with an emphasis on human-UAV collision scenarios. A review of extant literature is conducted to formulate safety measures and amplify awareness regarding UAV-associated hazards. The manuscript is methodically structured to encompass scenarios of hazard within UAV operations, historical accounts of collisions, and an analysis of their causative factors and subsequent ramifications. Additionally, it scrutinizes the legislative framework governing UAV operations on a global scale, with a specific focus on Europe and Poland. The discourse extends to the examination of physical impacts resultant from UAV-human collisions, exploring diverse scenarios and resultant injuries. The conclusion delineates the necessity for a comprehensive understanding of UAV-associated risks and advocates for strategies to mitigate collision risks. With UAVs becoming increasingly integrated into everyday functionalities, addressing potential threats assumes critical importance. Achieving equilibrium between technological advancement and public safety is para-mount. Effective regulation of UAVs necessitates a multifaceted approach, incorporating legal and procedural constraints to curtail accident rates. The manuscript underscores the imperative for established weight and height thresh-olds for UAVs, implementation of protective measures, and enhancement of public cognizance. Further investigative efforts are imperative to elucidate the long-term repercussions of UAV-induced injuries and the risks posed by emerging UAV models, underscoring the importance of responsible UAV utilization and the ongoing necessity for research in this domain.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
91--111
Opis fizyczny
Bibliogr. 87 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
Bibliografia
- 1. Abro, G.E.M.; Zulkifli, S.A.B.M.; Masood, R.J.; Asirvadam, V.S.; Laouti, A., (2022). Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats. Drones, 6, 284. https://doi.org/10.3390/drones6100284.
- 2. Balestrieri, E.; Daponte, P.; De Vito, L.; Picariello, F.; Tudosa, I., (2021). Sensors and Measurements for UAV Safety: An Overview. Sensors, 21, 8253. https://doi.org/10.3390/s21248253.
- 3. Bansal, N., Aggarwal, S., Tiwari, P., (2021). A case report of drone injury and its relevance in India. Journal of clinical orthopaedics and trauma, 19, 183-186. https://doi.org/10.1016/j.jcot.2021.05.027.
- 4. Barrett, B., (2021). A Drone Tried to Disrupt the Power Grid. It Won't Be the Last. Wired. Retrieved from https://www.wired.com/story/drone-attack-power-substation-threat/ (Accessed: [31 August 2023]).
- 5. BBC News., (2015). Drone maker DJI bans Washington flights after White House crash. Retrieved from https://www.bbc.com/news/technology-31023750 (Accessed: [31 August 2023]).
- 6. Bekrar, A., Ait El Cadi, A., Todosijevic, R., Sarkis, J., (2021). Digitalizing the Closing-of-the-Loop for Supply Chains: A Transportation and Blockchain Perspective. Sustainability, 13(5), 2895. https://doi.org/10.3390/su13052895.
- 7. Biała Księga Rynku Bezzałogowych Statków Powietrznych. (2019). U-SPACE – RYNEK – WIZJA ROZWOJU, Polish Economic Institute, Warsaw. Retrieved from https://pie.net.pl/wp-content/up-loads/2021/12/Biala_Ksiega_Bezzalogowych_Statkow_Powietrznych.pdf.
- 8. Bielawski, R.; Rządkowski, W.; Perz, R., (2018). Unmanned Aerial Vehicles in the Protection of the Elements of a Country’s Critical Infrastructure – Selected Directions of Development. Security and Defence Quarterly, 22 (5), 3-19. https://doi.org/10.5604/01.3001.0012.6422.
- 9. Booth, M., (2021). Drones and the new law: Amendments to the Air Navigation Order. Retrieved from https://www.prettys.co.uk/articles/drones-and-new-law-amendments-air-navigation-order (Accessed: [31 August 2023]).
- 10.Campolettano, E. T., Bland, M. L., Gellner, R. A. et al. (2017). Ranges of injury risk associated with impact from unmanned aircraft systems. Annals of biomedical engineering, 45, 2733-2741. https://doi.org/10.1007/s10439-017-1921-6.
- 11. Cast, N., (2018). How Dangerous Are Drones to Aircraft. Remoteflyer. Retrieved from https://www.re-moteflyer.com/how-dangerous-are-drones-to-aircraft/ (Accessed: [31 August 2023]).
- 12. Cavoukian, A., (2012). Privacy and Drones: Unmanned Aerial Vehicles. Information Privacy Commissioner Ontario, Canada. Retrieved from https://www.ipc.on.ca/wp-content/uploads/resources/pbd-drones.pdf (Accessed: [31 August 2023]).
- 13. Chabot, D., Bird, D. M., (2015). Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? Journal of Unmanned Vehicle Systems, 3(4), 137-155. https://doi.org/10.1139/juvs-2015-0021.
- 14. Chamola, V., Kotesh, P., Agarwal, A., Naren, Gupta, N., Guizani, M., (2021). A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Networks, 111, 102324. https://doi.org/10.1016/j.adhoc.2020.102324.
- 15. Chybowski, L., Przetakiewicz, W., (2020). Estimation of the Probability of Head Injury at a Given Abbreviated Injury Scale Level by Means of a Fuction of Head Injury Criterion. System Safety: Human-Technical Facility-Environment, 2(1), 91-99. https://doi.org/10.2478/czoto-2020-0012.
- 16. Deskiewicz, A., Perz, R., (2017). Agricultural aircraft wing slat tolerance for bird strike. Aircraft Engineering and Aerospace Technology, 89, 590-598. https://doi.org/10.1108/AEAT-11-2016-0220.
- 17. Dourado, E., Hammond, S., (2016). Do Consumer Drones Endanger the National Airspace? Evidence from Wildlife Strike Data. Mercatus center George Mason University. Retrieved from https://www.mercatus.org/students/research/policy-briefs/doconsumer-drones-endanger-national-airspace-evidence-wildlife (Accessed: [31 August 2023]).
- 18. Drone services market by Type Report, Markets and markets. (2023). Retrieved from: https://www.mar-ketsandmarkets.com/ (Accessed: [31 August 2023]).
- 19. Dulaney, A. M., (2019). Using finite element modeling to analyze injury thresholds of traumatic brain injury from head impacts by small unmanned aircraft systems. Theses and Dissertations, 4890. Retrieved from https://scholarsjunction.msstate.edu/td/4890 (Accessed: [31 August 2023]).
- 20. Eamon, E.T., Bland, M.L., Gellner, R.A. et al. (2017). Ranges of Injury Risk Associated with Impact from Unmanned Aircraft Systems. Annals of Biomedical Engineering, 45(12), 2733-2741. https://doi.org/10.1007/s10439-017-1921-6.
- 21. EASA., (2022). Easy Access Rules for Unmanned Aircraft Systems. Retrieved from https://www.easa.europa.eu/en/document-library/easy-access-rules/easy-access-rules-unmanned-air-craft-systems-regulations-eu. (Accessed: [31 August 2023]).
- 22. EASA., (2023). European Union Aviation Safety Agency. Retrieved from https://www.easa.eu-ropa.eu/en/domains/civil-drones (Accessed: [31 August 2023]).
- 23. European Commission., (2019). COMMISSION DELEGATED REGULATION (EU) 2019/945 on un-manned aircraft systems and on third-country operators of unmanned aircraft systems. Official Journal of the European Union.
- 24. Ewane, E.B.; Mohan, M.; Bajaj, S. et al. (2023). Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics. Remote Sensing, 15, 2627. https://doi.org/10.3390/rs15102627.
- 25. FAA., (2017). Final Report for the FAA UAS Center of Excellence Task A4: UAS Ground Collision Severity Evaluation. Retrieved from https://rosap.ntl.bts.gov/view/dot/32209 (Accessed: [31 August 2023]).
- 26. Feltynowski, M.; Zawistowski, M., (2018). Zagrożenia związane z wykorzystaniem bezzałogowych platform w służbach ratunkowo-porządkowych. BITP, 51(3), 138-149. https://doi.org/10.12845/bitp.51.3.2018.10.
- 27. Fiuk, J., Chamier-Gliszczyński, N., Jacyna, M., Izdebski, M., (2022). Energy Efficiency of Transport Tasks Performed by the Air SAR System in the Baltic Sea: Case Study. Energies, 15, 1-17. https://doi.org/10.3390/en15020643.
- 28. Flight Safety Foundation., (2018). Drone Interference. Retrieved from https://flightsafety.org/drone-in-terference/. (Accessed: [31 August 2023]).
- 29. Gołda, P., Zawisza, T., Izdebski, M., (2021). Evaluation of efficiency and reliability of airport processes using simulation tools. Eksploatacja i Niezawodność, 23, 659-669. https://doi.org/10.17531/ein.2021.4.8.
- 30. Gomez, L., (2021). NIAR AVET Lab at Wichita State offers small unmanned aircraft testing to comply with new FAA AC107-2A sUAS operations over people requirements. Retrieved from https://www.wichita.edu/industry_and_defense/NIAR/MediaCenter/2021-08-18.php (Accessed: [31 August 2023]).
- 31. Gorucu, S., Ampatzidis, Y., (2021). Drone Injuries and Safety Recommendations. EDIS, 2021(3). https://doi.org/10.32473/edis-ae560-2021.
- 32. Gregg, P., (2018). Impact tests prove large aircraft won’t always win in collision with small drones. University of Dayton Research Institute. Retrieved from https://udayton.edu/udri/news/18-09-13-risk-in-the-sky.php (Accessed: [31 August 2023]).
- 33. Gregorski, M., (2017). Regulacje dotyczące bezzałogowych statków powietrznych w prawie Unii Europejskiej w kontekście międzynarodowym. Studia Europejskie, 21(2(82)) 137-159.
- 34. Hambling, D., (2016). What Really Happens When a Drone Strikes an Airplane. Popular Mechanics. Retrieved from https://www.popularmechanics.com/flight/drones/a24467/drone-plane-collision/ (Accessed: [31 August 2023]).
- 35. Hitlin, P., (2017). 8% of Americans say they own a drone, while more than half have seen one in operation. Pew Research Center. Retrieved from https://www.pewresearch.org/short-reads/2017/12/19/8-of-americans-say-they-own-a-drone-while-more-than-half-have-seen-one-in-operation/ (Accessed: [31 Au-gust 2023]).
- 36. Hsu, S. Y., Wu, S. C., Rau, C. S. et al. (2019). Impact of adapting the abbreviated injury scale (AIS)-2005 from AIS-1998 on injury severity scores and clinical outcome. International Journal of Environmental Research and Public Health, 16(24), 5033. https://doi.org/10.3390/ijerph16245033.
- 37. Izdebski, M., Gołda, P., Zawisza, T., (2022). The use of the ant algorithm in the model of safety management of the traffic organization at the apron. Journal of KONBiN, 52, 63-76. https://doi.org/10.2478/jok-2022-0015 .
- 38. Izdebski, M., Gołda, P., Zawisza, T., (2023). The Use of Simulation Tools to Minimize the Risk of Dangerous Events on the Airport Apron. In E. Macioszek, A. Granà, G. Sierpiński (Eds.), Advanced Solutions and Practical Applications in Road Traffic Engineering : conference proceedings (Vol. 604, pp. 91-107). https://doi.org/10.1007/978-3-031-22359-4_6.
- 39. Jacyna-Gołda, I., Izdebski, M., Klimek, P., Vasek, R., (2019). Constructing a database structure in the problem of the assignment of air transport operators to commissioned tasks. MATEC Web of Conferences, 294, 1-6. https://doi.org/10.1051/matecconf/201929404004.
- 40. Janes., (2023). All the World’s Aircraft: Development Production Yearbook 22/23. ISBN: 978-0-7106-3396-5.
- 41. Jastrzębski, D., Perz, R., (2020). Rib kinematics analysis in oblique and lateral impact tests. Acta of Bioengineering and Biomechanics, 22(1), 1-9. https://doi.org/10.37190/ABB-01431-2019-03.
- 42. Johnson, D., Koya, B., Gayzik, F. S., (2020). Comparison of Neck Injury Criteria Values Across Human Body Models of Varying Complexity. Frontiers in Bioengineering and Biotechnology, 8, 985. https://doi.org/10.3389/fbioe.2020.00985.
- 43. Khan, A., Brown, L., (2021). Recreational drone-related injuries in children: a review of National Elec-tronic Injury Surveillance System (NEISS) data. Cureus, 13(6). https://doi.org/10.7759/cureus.15390.
- 44. Kiernan, K., (2019). How Much Of A Threat Do Drones Pose To Air Travel? Here's What You Should Know. Forbes. Retrieved from https://www.forbes.com/sites/kristykiernan/2019/02/21/drones-threat-airplanes-airports/?sh=4fe1058f30c6 (Accessed: [31 August 2023]).
- 45. Koh, C. H., Low, K. H., Li, L. et al. (2018). Weight threshold estimation of falling UAVs (Unmanned Aerial Vehicles) based on impact energy. Transportation Research Part C: Emerging Technologies, 93, 228-255. https://doi.org/10.1016/j.trc.2018.04.021.
- 46. Konert, A., (2021). Odpowiedzialność operatora bezzałogowego statku powietrznego za opóźnienie lub odwołanie lotu. Ius Novum, 15(1). https://doi.org/10.26399/iusnovum.v15.1.2021.09/a.konert.
- 47. Krawczyk, M., (2012). Niezawodność polskich samolotów bezpilotowych. Prace Instytutu Lotnictwa, (3 (224)), 52-62. https://doi.org/10.5604/05096669.1079805.
- 48. Krawczyk, M., (2013). Conditions for unmanned aircraft reliability determination. Eksploatacja i Niezawodność, 15(1), 31-36.
- 49. Łakomski, G., (2023). Okęcie: lotnisko Chopina: dron wielkości szybowca przeleciał 30 metrów od lądującego samolotu linii LOT. TVN24. Retrieved from https://tvn24.pl/polska/okecie-lotnisko-chopina-dron-wielkosci-szybowca-przelecial-30-metrow-od-ladujacego-samolotu-linii-lot-7125064 (Accessed: [31 August 2023]).
- 50. Leslie, J., (2023). US DRONE STATISTICS 2023. Drone Survey Services. Retrieved from https://drone-surveyservices.com/drone-statistics/ (Accessed: [31 August 2023]).
- 51. Lippi, G., Mattiuzzi, C., (2016). Biological samples transportation by drones: ready for prime time? Annals of Translational Medicine, 4(5), 92. https://doi.org/10.21037/atm.2016.02.03.
- 52. Łukasiewicz, J., (2022). Bezzałogowe statki powietrzne jako źródło zagrożeń infrastruktury zaopatrzenia państw w energię elektryczną oraz proponowane metody ochrony tej infrastruktury. Terroryzm. Studia, analizy, prewencje, 1(1), 90-122. https://doi.org/10.4467/27204383TER.22.004.15420
- 53. Lum, C., Tsukada, D., (2016). UAS Reliability and Risk Analysis. In Encyclopedia of Aerospace Engineering (eds R. Blockley and W. Shyy). https://doi.org/10.1002/9780470686652.eae1148.
- 54. Lutek, M., (2019). Wybrane aspekty problematyki odpowiedzialności za szkody spowodowane bezzałogowymi statkami powietrznymi. Przegląd Ustawodawstwa Gospodarczego, (3), 129-133. https://doi.org/10.33226/0137-5490.2019.3.20.
- 55. McNabb, M., (2018). The Cost of Carelessness: Operator Sentenced in Space Needle Incident. Dronelife. Retrieved from https://dronelife.com/2018/05/24/the-cost-of-carelessness-operator-sentenced-in-space-needle-incident/ (Accessed: [31 August 2023]).
- 56. Mikolajczak, C. M., (2012). Lithium-ion batteries hazard and use. Fire Protection Research Foundation, Springer Science Business Media.
- 57. Miletich, S., (2017). Man convicted in drone crash that injured woman during Seattle’s. The Seattle Times. Retrieved from https://www.seattletimes.com/seattle-news/law-justice/man-convicted-in-drone-crash-that-injured-woman-during-seattles-pride-parade/ (Accessed: [31 August 2023]).
- 58. Moskowitz, E. E., Siegel-Richman, Y. M., Hertner, G., Schroeppel, T., (2018). Aerial drone misadventure: A novel case of trauma resulting in ocular globe rupture. American Journal of Ophthalmology Case Reports, 10, 35-37. https://doi.org/10.1016/j.ajoc.2018.01.039.
- 59. Nishith Desai Associates, (2021). The Global Drone Revolution: Aerial Transport, Agritech, Commerce Allied Opportunities. Retrieved from https://www.nishithdesai.com/fileadmin/user_upload/pdfs/Research_Papers/The_Global_Drone_Revolution.pdf (Accessed: [31 August 2023]).
- 60. PAP., (2023). Ekspert: wysadzając tamę w Kachowce, Rosjanie opóźnili o miesiąc ukraińskie natarcie na lewy brzeg Dniepru. Polska Agencja Prasowa. Retrieved from https://www.pap.pl/aktual-nosci/news%2C1583131%2Cekspert-wysadzajac-tame-w-kachowce-rosjanie-opoznili-o-miesiac-ukrainskie (Accessed: [31 August 2023]).
- 61. Perz, R.; Wronowski, K., (2018). UAV Application for Precision Agriculture. Aircraft Engineering and Aerospace Technology, 91 (2), 257-263. https://doi.org/10.1108/AEAT-01-2018-0056.
- 62. Pietrek, G.; Pietrek, M., (2022). Bezzałogowe statki powietrzne jako zagrożenie dla infrastruktury kry-tycznej państwa. Zeszyty Naukowe SGSP, 83, 163-174. https://doi.org/10.5604/01.3001.0016.0230.
- 63. Pietrzykowski, Z., Wołejsza, P., Nozdrzykowski, Ł. et al. (2022). The autonomous navigation system of a sea-going vessel. Ocean Engineering, 261, 112104. https://doi.org/10.1016/j.oceaneng.2022.112104.
- 64. Pompigna, A., Mauro, R., (2022). Smart roads: A state of the art of highways innovations in the Smart Age. Engineering Science and Technology, an International Journal, 25, 100986. https://doi.org/10.1016/j.jestch.2021.04.005.
- 65. Prasad, P., Mertz, H. J., (1985). The position of the United States delegation to the ISO Working Group 6 on the use of HIC in the automotive environment. SAE transactions, 106-116. https://doi.org/10.4271/851246.
- 66. Pride Parade. The Seattle Times. Retrieved from https://www.seattletimes.com/seattle-news/law-justice/man-convicted-in-drone-crash-that-injured-woman-during-seattles-pride-parade/ (Accessed: [31 August 2023]).
- 67. Rattanagraikanakorn, B., Gransden, D. I., Schuurman, M et al. (2020). Multibody system modelling of unmanned aircraft system collisions with the human head. International Journal of Crashworthiness, 25(6), 689-707. https://doi.org/10.1080/13588265.2019.1633818.
- 68. Rattanagraikanakorn, B., Schuurman, M., Gransden, D. I., et al. (2022). Modelling head injury due to unmanned aircraft systems collision: Crash dummy vs human body. International Journal Of Crashworthiness, 27(2), 400-413. https://doi.org/10.1080/13588265.2020.1807687.
- 69. Raymond, D., Van Ee, C., Crawford, G., Bir, C., (2009). Tolerance of the skull to blunt ballistic temporo-parietal impact. Journal of Biomechanics, 42(15), 2479-2485. https://doi.org/10.1016/j.jbio-mech.2009.07.018.
- 70. Reagan, J., (2015). Drone Crashes into Seattle Ferris Wheel. Dronelife. Retrieved from https://dronelife.com/2015/11/15/drone-crashes-into-seattle-ferris-wheel/ (Accessed: [31 August 2023]).
- 71. Rossiter, A., (2018). Drone Usage by Militant Groups: Exploring Variation in Adoption. Defense Security Analysis, 34 (2), 113-126. https://doi.org/10.1080/14751798.2018.1478183.
- 72. Shelley, (2016). A Model of Human Harm from a Falling Unmanned Aircraft: Implications for UAS Regulation. International Journal of Aviation, Aeronautics, and Aerospace, 3 (3). https://doi.org/10.15394/ijaaa.2016.1120.
- 73. Spitzer, N., Singh, J. K., (2018). Pediatric ocular trauma caused by recreational drones: two case reports. Journal of American Association for Pediatric Ophthalmology and Strabismus, 22(3), 237-238. https://doi.org/10.1016/j.jaapos.2017.11.010.
- 74. Stark, D. B., Willis, A. K., Eshelman, Z., Kang, Y. S., Ramachandra, R., Bolte IV, J. H., McCrink, M., (2020). Human response and injury resulting from head impacts with unmanned Aircraft systems (No. 2019-22-0002). SAE Technical Paper. https://doi.org/10.4271/2019-22-0002.
- 75. Stöcker C., Bennett, R., Nex, F., Gerke, M., Zevenbergen, J., (2017). Review of the Current State of UAV Regulations. Remote Sensing, 9, 459. https://doi.org/10.3390/rs9050459.
- 76. Susini, (2015). A Technocritical Review of Drones Crash Risk Probabilistic Consequences and its Societal Acceptance. RIMMA 2014 Berlin, Risk information management, risk models and applications. Retrieved from https://www.researchgate.net/publication/291697791_A_Technocritical_Review_of_Drones_Crash_Risk_Probabilistic_Consequences_and_its_Societal_Acceptance (Accessed: [31 August 2023]).
- 77. Svatý, Z., Nouzovský, L., Mičunek, T., Frydrýn, M., (2022). Evaluation of the drone-human collision consequences. Heliyon, 8(11). https://doi.org/10.1016/j.heliyon.2022.e1167.
- 78. Tegler, E., (2019). What Happens When a Drone Crashes Into Your Face? Popular Mechanics. Retrieved from https://www.popularmechanics.com/flight/drones/a28774546/drone-head-collision/ (Accessed: [31 August 2023]).
- 79. Thompson, (2021). A Drone Crash Caused Thousands of Elegant Terns to Abandon Their Nests. Audubon magazine. Retrieved from https://www.audubon.org/news/a-drone-crash-caused-thousands-elegant-terns-abandon-their-nests (Accessed: [31 August 2023]).
- 80. Tkacz, M., (2020). Bezzałogowe statki powietrzne jako źródło zagrożeń dla ruchu lotniczego. Przegląd Policyjny, 134(2), 233-248. https://doi.org/10.5604/01.3001.0013.7439.
- 81. Waite, M., (2021). Drone Journalism. Retrieved from Github: http://mattwaite.github.io/dronebook/index.html#getting-started (Accessed: [31 August 2023]).
- 82. Wakefield, (2023). 7 tips to avoid a drone bird strike. Coverdrone. Retrieved from https://www.cover-drone.com/7-tips-to-avoid-a-drone-bird-strike/ (Accessed: [31 August 2023]).
- 83. Weil, M., (2013). Drone crashes into Virginia bull run crowd. The Washington Post. Retrieved from https://www.washingtonpost.com/local/drone-crashes-into-virginia-bull-run%20crowd/2013/08/26/424e0b9e-0e00-11e3-85b6-d27422650fd5_story.html (Accessed: [31 August 2023]).
- 84. Werfelman, L., (2017). Weighing the Damages. Flight Safety Foundation. Retrieved from https://flightsafety.org/asw-article/weighing-the-damages/. (Accessed: [31 August 2023]).
- 85. Wild, G., Murray, J., Baxter, G., (2016). Exploring Civil Drone Accidents and Incidents to Help Prevent Potential Air Disasters. Aerospace, 3, 22. https://doi.org/10.3390/aerospace3030022.
- 86. Yang Liu, X. Z., (2021). Ground Risk Assessment of UAV Operations Based on Horizontal Distance Estimation under Uncertain Conditions. Mathematical Problems in Engineering, 3384870. https://doi.org/10.1155/2021/3384870.
- 87. Završnik, A., (2015). Drones and unmanned aerial systems: Legal and social implications for security and surveillance. Springer. https://doi.org/10.1007/978-3-319-23760-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65dcb36d-8ba1-4dc2-ae40-8c5609ac2cfd