PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sensitivities of the Tiedtke and Kain-Fritsch Convection Schemes for RegCM4.5 over West Africa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Realistic simulation of weather and climate parameters over West Africa is daunting, so the performance of the Tiedtke and Kain-Fritsch convection schemes within version 4.5 of the Regional Climate Model (RegCM4.5) of the International Centre for Theoretical Physics, Trieste is evaluated over West Africa for improved simulation. The two schemes are compared to two traditional mixture schemes (Grell on land and Emanuel on Ocean), outperforming the mixture schemes with reduced magnitude and spatial coverage of dry bias. Both schemes simulate precipitation over West Africa with a low dry bias, however, the Kain-Fritsch convection scheme simulates more realistic precipitation in the West African convective environment. This is associated with the inclusion of a variable cloud radius and the convective available potential energy closure for the Kain-Fritsch in contrast to a fixed cloud radius and moisture convergence of the of the Tiedtke scheme. The simulated outgoing longwave radiation and omega lend support to the spatial variations and amount of simulated precipitation in the different areas by the schemes. The spatial variation of simulated temperature over the target region shows lower bias than precipitation by all the convection schemes. Soil moisture is more accurately simulated (correlation coefficient ~1) in the savannah (8-10°N) and Sahel (22-28°N) environments by all the convection schemes. Tiedtke performs the most accurate simulations of the pattern and profile of zonal wind which controls climate circulation, with slightly weaker simulations of the Africa easterly jet with core magnitude less than 10 m·s-1. The accuracy of the KF and Tiedtke in RegCM4.5 in simulating the climate of West Africa is documented for the first time for application in future studies over the region.
Twórcy
  • University of Ibadan, Department of Physics, Ibadan, Oyo State, Nigeria
Bibliografia
  • Abiodun B.J., Adeyewa Z.D., Oguntunde P.G, Salami A.T. Ajayi V.O., 2012, Modeling the impacts of reforestation on future climate in West Africa, Theoretical and Applied Climatology, 110 (1-2),77-96, DOI: 10.1007/s00704-012-0614-1.
  • Adeniyi M.O., 2014, Sensitivity of different convection schemes in RegCM4.0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa, Theoretical and Applied Climatology, 115 (1-2), 305-322, DOI: 10.1007/s00704-013-0881-5.
  • Adeniyi M.O., 2016, The consequences of the IPCC AR5 RCPs 4.5 and 8.5 climate change scenarios on precipitation in West Africa, Climatic Change, 139 (2), 245-263, DOI: 10.1007/s10584-016-1774-2.
  • Adeniyi M.O., 2017, Modeling the impact of changes in Atlantic sea surface temperature on the climate of West Africa, Meteorology and Atmospheric Physics, 129 (2), 187-210, DOI: 10.1007/s00703-016-0473-x.
  • Adeniyi M.O., Dilau K.A., 2018, Assessing the link between Atlantic Niño 1 and drought over West Africa using CORDEX regional climate models, Theoretical and Applied Climatology, 131 (3), 937-949, DOI: 10.1007/s00704-016-2018-0.
  • Arteta J., Marécal V., Rivière E.D., 2009, Regional modelling of tracer transport by tropical convection – Part 1: Sensitivity to convection parameterization, Atmospheric Chemistry and Physics, 9 (18), 7081-7100, DOI: 10.5194/acp-9-7081-2009.
  • Bechtold P., Bazile E., Guichard F., Mascart P., Richard E., 2001, A mass-flux convection scheme for regional and global models, Quarterly Journal of the Royal Meteorological Society, 127 (573), 869-886, DOI: 10.1002/qj.49712757309.
  • Bolvin D.T., Adler R.F., Huffman G.J., Nelkin E.J., Poutiainen J.P., 2009, Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations, Journal of Applied Meteorology and Climatology, 48 (9), 1843-1857, DOI: 10.1175/2009JAMC2147.1.
  • Brown C., Greene A., Block P., Giannini A., 2008, Review of downscaling methodologies for Africa climate applications, IRI Technical Report 08-05, International Research Institute for Climate and Society, Columbia University, DOI: 10.7916/D8M04C88.
  • Caminade C., Terray L., 2010, Twentieth century Sahel rainfall variability as simulated by the ARPEGE AGCM, and future changes, Climate Dynamics, 35 (1), 75-94, DOI: 10.1007/s00382-009-0545-4.
  • Chen T.-C., van Loon H., 1987, Interannual variation of the tropical easterly jet, Monthly Weather Review, 115 (8), 1739-1759, DOI: 10.1175/1520-0493(1987)1152.0.CO;2
  • Cook K.H., 1999, Generation of the African easterly jet and its role in determining West African precipitation, Journal of Climate, 12 (5), 1165-1184, DOI: 10.1175/1520-0442(1999)0122.0.CO;2.
  • Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., 2011, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological Society, 137 (656), 553-597, DOI: 10.1002/qj.828
  • Diallo I., 2015, Sensitivity of West African Monsoon water cycle to land surface schemes in RegCM4, AGU Fall Meeting, San Francisco, 16 December 2015, Abstract id. A33J-0322.
  • Diedhiou A., Janicot S., Viltard A., de Felice P., Laurent H., 1999, Easterly wave regimes and associated convection over West Africa and tropical Atlantic: results from NCEP/NCAR and ECMWF reanalyses, Climate Dynamics, 15 (11), 795-822, DOI: 10.1007/s003820050316.
  • Donner L.J., 1993, A Cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects, Journal of Atmospheric Sciences, 50 (6), 889-906, DOI: 10.1175/1520-0469(1993)0502.0.CO;2.
  • Elguindi N., Bi X., Giorgi F., Nagarajan B., Pal J., Solmon F., Rauscher S., Zakey A., O’Brien T., Nogherotto R., Giuliani G., 2014, Regional Climate Model RegCM Reference Manual, version 4.5, Trieste, Italy, available at https://gforge.ictp.it/gf/download/docmanfileversion/95/1585/ReferenceMan.pdf (data access 13.02.2019).
  • Ellingson R.G., Yanuk D.J., Lee H.-T., Gruber A., 1989, A technique for estimating outgoing longwave radiation from HIRS radiance observations, Journal of Atmospheric and Oceanic Technology, 6, 706-711, DOI: 10.1175/1520-0426(1989)0062.0.CO;2.
  • Gao X., Shi Y., Giorgi F., 2016, Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model, Atmospheric and Oceanic Science Letters, 9 (4), 246-254, DOI: 10.1080/16742834.2016.1172938.
  • Giorgi F., Coppola E., Solmon F., Mariotti L., Sylla M.B., Bi X., Elguindi N., Diro G.T., Nair V., Giuliani G., Turuncoglu U.U., Cozzini S., Güttler I., O’Brien T.A., Tawfik A.B., Shalaby A., Zakey A.S., Steiner A.L., Stordal F., Sloan L.C., Brankovic C., 2012, RegCM4: model description and preliminary tests over multiple CORDEX domains, Climate Research, 52, 7-29, DOI: 10.3354/cr01018.
  • Giorgi F., Solmon F., Giuliani G., 2016, Regional Climatic Model RegCM User’s Guide, version 4.5, Trieste, Italy, available at https://gforge.ictp.it/gf/download/docmanfileversion/94/1584/UserGuide.pdf (data access 13.02.2019).
  • Grell G.A., Dévényi D., 2002, A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophysical Research Letters, 29 (14), DOI: 10.1029/2002GL015311.
  • Grell G.A., Freitas S.R., 2014, A scale and aerosol aware stochastic convective parameterization for weather and air quality modelling, Atmospheric Chemistry and Physics, 14 (10), 5233-5250, DOI: 10.5194/acp-14-5233-2014.
  • Huffman G.J., Adler R.F., Morrissey M., Bolvin D., Curtis S., Joyce R., McGavock B., Susskind J., 2001, Global precipitation at one-degree daily resolution from multi-satellite observations, Journal of Hydrometeorology, 2 (1), 36-50, DOI: 10.1175/1525-7541(2001)0022.0.CO;2.
  • Im E.-S., Gianotti R.L., Eltahir E.A.B., 2014, Improving the simulation of the West African Monsoon using the MIT regional climate model, Journal of Climate, 27, 2209-2229, DOI: 10.1175/JCLI-D-13-00188.1.
  • Janjić Z.I., 1994, The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes, Monthly Weather Review, 122 (5), 927-945, DOI: 10.1175/1520-0493(1994)1222.0.CO;2.
  • Janjić Z.I., 2000, Comments on ”Development and evaluation of a convection scheme for use in climate models”, Journal of the Atmospheric Sciences, 57 (21), 3686-3686, DOI: 10.1175/1520-0469(2000)0572.0.CO;2.
  • Jones C., Giorgi F., Asrar G., 2011, The Coordinated Regional Downscaling Experiment: CORDEX. An international downscaling link to CMIP5, CLIVAR Exchanges, 56 (16), 34-41, http://www.clivar.org/sites/default/files/documents/Exchanges56.pdf
  • Kain J.S., 2004, The Kain-Fritsch convective parameterization: an update, Journal of Applied Meteorology, 43 (1), 170-181, DOI: 10.1175/1520-0450(2004)0432.0.CO;2.
  • Kain J.S., Baldwin M.E., Weiss S.J., 2003, Parameterization updraft mass flux as a predictor of convective intensity, Weather Forecasting, 18 (1), 106-116, DOI: 10.1175/1520-0434(2003)0182.0.CO;2.
  • Kain J.S., Fritsch J.M., 1990, A one-dimensional entraining/ detraining plume model and its application in convective parameterization, Journal of the Atmospheric Sciences, 47 (23), 2784-2802, DOI: 10.1175/1520-0469(1990)0472.0.CO;2.
  • Kain J.S., Fritsch J.M., 1993, Convective parameterization for mesoscale models: The Kain- Fritsch scheme, [in:] The representation of cumulus convection in numerical models, K.A. Emanuel, D.J. Raymond (eds.), American Meteorological Society, 165-170, DOI: 10.1007/978-1-935704-13-3_16.
  • Klein C., Heinzeller D., Bliefernicht J., Kunstmann H., 2015, Variability of West African monsoon patterns generated by a WRF multi-hysics ensemble, Climate Dynamics, 45 (9-10), 2733-2755, DOI: 10.1007/s00382-015-2505-5.
  • Kothe S., Lüthi D., Ahrens B., 2014, Analysis of the West African Monsoon system in the regional climate model COSMO-CLM, International Journal of Climatology, 34 (2), 481-493, DOI: 10.1002/joc.3702.
  • Kreitzberg C.W., Perkey D.J., 1976, Release of potential instability: Part I, A sequential plume model within a hydrostatic primitive equation model, Journal of the Atmospheric Sciences, 33 (3), 456-475, DOI: 10.1175/1520-0469(1976)0332.0.CO;2.
  • Leroux S., Hall N.M.J., 2009, On the relationship between African easterly waves and the African easterly jet, Journal of the Atmospheric Sciences, 66 (8), 2303-2316, DOI: 10.1175/2009JAS2988.1.
  • Liebmann B., Smith, C.A., 1996, Description of a complete (interpolated) Outgoing Longwave Radiation Dataset, Bulletin of the American Meteorological Society, 77 (6), 1275-1277, https://www.jstor.org/stable/26233278.
  • Liu P., Wang B., Sperber K.R., Li T., Meehl G.A., 2005, MJO in the NCAR CAM2 with the Tiedtke convective scheme, Journal of Climate, 18 (15), 3007-3020, DOI: 10.1175/JCLI3458.1.
  • Ma L.-M., Tan Z.-M., 2009, Improving the behaviour of the cumulus parameterization for tropical cyclone prediction: Convection trigger, Atmospheric Research, 92 (2), 190-211, DOI: 10.1016/j.atmosres.2008.09.022.
  • Mendes D., Marengo J.A., 2010, Temporal downscaling: a comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios, Theoretical and Applied Climatology, 100 (3-4), 413-421, DOI: 10.1007/s00704-009-0193-y.
  • Mitchell T.D., Jones P.D., 2005, An improved method of constructing a database of monthly climate observations and associated high-resolution grids, International Journal of Climatology, 25 (6), 693-712, DOI: 10.1002/joc.1181.
  • Nikulin G., Jones C., Giorgi F., Asrar G., Büchner M., CerezoMota R., Christensen O.B., Déqué M., Fernandez J., Hänsler A., Meijgaard E.V., Samuelsson P., Sylla M.B., Sushama L., 2012, Precipitation climatology in an ensemble of CORDEXAfrica regional climate simulations, Journal of Climate, 25 (18), 6057-6078, DOI: 10.1175/JCLI-D-11-00375.1.
  • Noble E., Druyan L.M., Fulakeza M., 2014, The sensitivity of WRF daily summer time simulations over West Africa to alternative parameterizations, Part I: African Wave Circulation, Monthly Weather Review, 142 (4), 1588-1608, DOI: 10.1175/ MWR-D-13-00194.1.
  • Satyaban B., Ratnam J.V., Ratnam S.K., Behera C.J., de Rautenbach W., Ndarana T., Takahashi K., Yamagata T., 2014, Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa, Climate Dynamics, 42 (11-12), 2931-2953, DOI: 10.1007/s00382-013-1918-2.
  • Schumacher C., Houze Jr. R.A., 2003, Stratiform rain in the tropics as seen by the TRMM precipitation radar, Journal of Climate, 16 (11), 1739-1756, DOI: 10.1175/1520-0442(2003)0162.0.CO;2.
  • Simpson J., Wiggert V., 1969, Models of precipitating cumulus towers, Monthly Weather Review, 97 (7), 471-489, DOI: 10.1175/1520-0493(1969)0972.3.CO;2.
  • Steiner A.L., Pal J.S., Rauscher S.A., Bell J.L., Diffenbaugh N.S., Boone A., Sloan L.C., Giorgi F., 2009, Land surface coupling in regional climate simulations of the West African monsoon, Climate Dynamics, 33 (6), 869-892, DOI: 10.1007/s00382- 009-0543-6.
  • Sylla M.B., Giorgi F., Ruti P.M., Calmanti S., Dell’Aquila A., 2011, The impact of deep convection on the West African summer monsoon climate: a regional climate model sensitivity study, Quarterly Journal of the Royal Meteorological Society, 137 (659), 1417-1430, DOI: 10.1002/qj.853.
  • Tiedtke M., 1989, A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Monthly Weather Review, 117 (8), 1779-1800, DOI: 10.1175/1520-0493(1989)1172.0.CO;2.
  • Yavinchan S., Exell R.H.B., Sukawat D., 2006, Precipitation forecasts by the new Kain-Fritsch convection scheme during the extreme precipitation event in Southern Thailand, [in:] The 2nd Joint International Conference on “Sustainable Energy and Environment”, 21-23 November 2006, Bangkok, Thailand, available at http://www.jgsee.kmutt.ac.th/see1/cd/file/D-006. pdf (data access 13.02.2019).
  • Yin X., Gruber A., Arkin P., 2004, Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979-2001, Journal of Hydrometeorology, 5 (6), 1207-1222, DOI: 10.1175/JHM-392.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65daba48-b627-488f-b66a-8798d3eb8519
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.