PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Weighted Hermite-Hadamard inequalities for r-times differentiable preinvex functions for k-fractional integrals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we have established some new bounds of Fejér-type Hermite-Hadamard inequality for k-fractional integrals involving r-times differentiable preinvex functions. It is noteworthy that in the past, there was no weighted version of the left and right sides of the Hermite-Hadamard inequality for k-fractional integrals for generalized convex functions available in the literature.
Wydawca
Rocznik
Strony
art. no. 20220254
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan
  • Govt. Graduate College Sahiwal, Sahiwal, Pakistan
autor
  • Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Bibliografia
  • [1] H. Liu, C. Liu, G. Bai, Y. Wu, C. He, R. Zhang, et al., Influence of pore defects on the hardened properties of 3-D printed concrete with coarse aggregate, Addit. Manuf. 55 (2022), 102843, DOI: https://doi.org/10.1016/j.addma.2022.102843.
  • [2] C. H. He, S. H. Liu, C. Liu, and H. M. Sedighi, A novel bond stress-slip model for 3-D printed concretes, Discrete Contin. Dyn. Syst. 15 (2022), no. 7, 1669–1683, DOI: https://doi.org/10.3934/dcdss.2021161.
  • [3] L. Fejér, Uber die Fourierreihen, II. Math. Naturwiss Anz. Ungar. Akad. Wiss. 24 (1906), 369–390.
  • [4] R. S. Ali, A. Mukheimer, T. Abdeljawad, S. Mubeen, S. Ali, G. Rahman, et al., Some new harmonically convex function type generalized fractional integral inequalities, Fractal Fract. 54 (2021), no. 5, 1–12, DOI: https://doi.org/10.3390/fractalfract5020054.
  • [5] S. Mehmood, F. Zafar, and N. Yasmin, Hermite-Hadamard-Fejér type inequalities for preinvex functions using fractional integrals, Mathematics 7 (2019), no. 5, 467, DOI: https://doi.org/10.3390/math7050467.
  • [6] G. Rahman, A. Khan, and T. Abdeljawad, The Minkowski inequalities via generalized proportional fractional integral operators, Adv. Differential Equations 2019 (2019), 287, DOI: https://doi.org/10.1186/s13662-019-2229-7.
  • [7] G. Rahman, K. S. Nisar, and F. Qi, Some new inequalities of the Grüss type for conformable fractional integrals, AIMS Math. 3 (2018), no. 4, 575–583, DOI: https://doi.org/10.3934/Math.2018.4.575.
  • [8] P. O. Mohammed, T. Abdeljawad, S. Zeng, and A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry 12 (2020), no. 9, 1485, DOI: https://doi.org/10.3390/sym12091485.
  • [9] K. S. Nisar, A. Tassaddiq, and G. Rahman, Some inequalities via fractional conformable integral operators, J. Inequal. Appl. 217 (2019), 1–8, DOI: https://doi.org/10.1186/s13660-019-2170-z.
  • [10] M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57 (2013), no. 9, 2403–2407, DOI: https://doi.org/10.1016/j.mcm.2011.12.048.
  • [11] A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, 2006.
  • [12] S. Mubeen and G. M. Habibullah, k -fractional integrals and applications, Int. J. Contemp. Math. Sci. 7 (2012), 89–94.
  • [13] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), 1471–1484.
  • [14] T. Weir and B. Mond, Preinvex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1998), no. 1, 29–38, DOI: https://doi.org/10.1016/0022-247X(88)90113-8.
  • [15] H. Kadakal, H. Maden, M. Kadakal, and I. İşcan, Some new integral inequalities for n-times differentiable r-convex and r-concave functions, Miskolc Math. Notes. 20 (2019), no. 2, 997–1011, DOI: https://doi.org/10.18514/MMN.2019.2489.
  • [16] M. A. Latif and S. S. Dragomir, On Hermite-Hadamard-type integral inequalities for n-times differentiable log-preinvex functions, Filomat. 29 (2015), no. 7, 1651–1661, DOI: https://doi.org/10.2298/FIL1507651L.
  • [17] M. A. Latif and S. S. Dragomir, Generalization of Hermite-Hadamard-type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications, Hacettepe J. Math. Stat. 44 (2015), no. 4, 839–853, DOI: https://doi.org/10.15672/HJMS.2015449438.
  • [18] S. Mehmood, F. Zafar, and N. Yasmin, Hermite-Hadamard-type inequalities for n-times differentiable s m,( )- preinvex functions using fractional integrals, J. Math. Anal. 11 (2020), no. 4, 31–44.
  • [19] T. Sercan, I. İşcan, and K. Mehmet, Hermite-Hadamard type inequalities for n-times differentiable convex functions via Riemann-Liouville fractional integrals, Filomat 32 (2018), no. 16, 5611–5622, DOI: https://doi.org/10.2298/FIL1816611T.
  • [20] S. Wang and F. Qi, Hermite-Hadamard-type inequalities for n-times differentiable and preinvex functions, J. Inequal. Appl. 2014 (2014), 49, DOI: https://doi.org/10.1186/1029-242X-2014-49.
  • [21] J. Zhang, F. Qi, G. Xu, and Z. Pei, Hermite-Hadamard-type inequalities for n-times differentiable and geometrically quasi-convex functions, SpringerPlus. 5 (2016), 524, DOI: https://doi.org/10.1186/s40064-016-2083-y.
  • [22] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65d9550e-6b08-4dbe-8e6d-ffde6030b064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.