PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the numerical minimisation of the objective function applied to spherical harmonics fitting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents some considerations on the performance of various objective function minimization methods in the process of GNSS antenna PCV determination. It is particulary important in the case of structural health monitoring and diagnostics. PCV are used as an additional feature to improve the GNSS positioning accuracy. The process of PCV derivation is complex and involves fitting spherical harmonics into a set of observables. The paper compares computing performance and accuracy of few methods used in the fitting process.
Czasopismo
Rocznik
Strony
art. no. 2023313
Opis fizyczny
Bibliogr. 12 poz., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Oczapowskiego 1, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, Oczapowskiego 1, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Dennis J. E, Schnabel R. B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations vol. 16; Classics in Applied Mathematics. SIAM 1996.
  • 2. Hestenes M. R, Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau Standards 1952; 49: 409-436.
  • 3. Khoh WH, Pang YH, Ooi SY, Wang L-Y-K, Poh QW. Predictive Churn Modeling for Sustainable Business in the Telecommunication Industry: Optimized Weighted Ensemble Machine Learning. Sustainability. 2023; 15(11): 8631. https://doi.org/10.3390/su15118631.
  • 4. Margques J. P. P. G, Cuhna D. C, Harada L. M. F, Silva L. N, Silva I. D. A cost-effective trilaterationbased radio localization algorithm using machine learning and sequential least-square programming optimization. Computer Communications 2021; 177: 1-9. https://doi.org/10.1016/j.comcom.2021.06.005.
  • 5. Nash S. G. A survey of truncated-Newton methods. Journal of Computational and Applied Mathematics 2000; 124(1-2): 45-59. https://doi.org/10.1016/S0377-0427(00)00426-X.
  • 6. Powell M. J. D. A View of Algorithms for Optimization Without Derivatives. Cambridge University Technical Report DAMTP 2007.
  • 7. Royer C. W, O’Neill M, Wright S. J. A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization. Mathematical Programming 2019; 180: 451-488. https://doi.org/10.1007/s10107-019-01362-7.
  • 8. Sahin F. E. Open-Source Optimization Algorithms for Optical Design. Optik 2019; 178: 1016-1022. http://dx.doi.org/10.1016/j.ijleo.2018.10.073.
  • 9. Schmidt M, Dettmering D, Mößmer M, Wang Y, Zhang J. Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Science 2011; 46(6): 1-8. https://doi.org/10.1029/2010RS004609.
  • 10. Stuetzle W. The Conjugate Gradient Method. Statistical Computing 2001.
  • 11. Zhu C, Byrd R. H, Lu P, Nocedal J. Algorithm 778: LBFGS-B: Fortran Subroutines for Large-Scale BoundConstrained Optimization. ACM Transactions on Mathematical Software 1997; 23(4): 550-560. https://doi.org/10.1145/279232.279236.
  • 12. https://ui.adsabs.harvard.edu/link_gateway/2018zndo.1241501V/doi:10.5281/zenodo.1241501.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65d7869b-8702-482b-9430-15861fc42584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.