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Abstract  

The paper presents some considerations on the performance of various objective function minimization 

methods in the process of GNSS antenna PCV determination. It is particulary important in the case of structural 

health monitoring and diagnostics. PCV are used as an additional feature to improve the GNSS positioning 

accuracy. The process of PCV derivation is complex and involves fitting spherical harmonics into a set of 

observables. The paper compares computing performance and accuracy of few methods used in the fitting 

process. 
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List of Symbols/Acronyms 

 
A - design matrix  

BFGS – Broyden-Fletcher-Goldfarb-Shanno 

algorithm  

c - speed of light 

CG – conjugate gradient algorithm  

GNSS – global navigation satellite systems 

𝐼𝑓𝐴
𝑗

- ionospheric delay 

L - OMC matrix  

LOS – line of sight 

𝑀𝑃𝑓𝐴
𝑗
- phase multipath term 

𝑁𝑓𝐴- the ambiguity 

P - weight matrix  

PCV – phase centre variations  

𝑃𝐶𝑉𝑓𝐴- the phase center variations 

RMS – root mean square  

SLSQP – Sequential Least Squares Programming  

TDSD - time differences of a single difference 

𝑇𝑓𝐴
𝑗

- the tropospheric delay  

TNC – truncated Newton algorithm 

V - residuals  

𝜌𝐴
𝑗
 - geometric distance 

𝛿𝑡𝐴and 𝛿𝑡𝑗the receiver and satellite clock errors, 

respectively 

𝛿𝜙𝑓𝐴and 𝛿𝜙𝑓
𝑗
hardware delays in the receiver and satellite 

respectively 

𝜉𝑗𝑓𝐴  - measurement noise 

 

1. INTRODUCTION  

 

GNSS antenna calibration is a process in which 

phase centre variations (PCV) are estimated for  

a given GNSS receiver antenna. It is important in 
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high-accuracy applications of GNSS like coordinate 

systems definition or deformation measurements. 

This aspect is particularly important in the 

diagnostics of the structural health of constructions 

where the deformations are often at the level of 

single millimetres. The PCVs obtained from the 

calibration process are disseminated as “individual” 

or “type” ANTEX files. These files are then used in 

GNSS data processing software. To derive the 

PCVs, a few steps must be completed:  

(1) measurements, (2) data preprocessing, and  

(3) deriving a model. This article is focused on the 

last part of the process. Antenna PCV models are 

delivered to end users as tabular data containing 

PCV values in the regular grid on the hemisphere. 

These values are used to interpolate corrections to 

observed phase measurements in receiver-satellite 

line of sight (LOS) in GNSS data postprocessing. 

The observables used to estimate the PCV are 

uniformly distributed on the hemisphere.  

To estimate the correction values in ANTEX files, 

spherical harmonics are used.  
Spherical harmonics are special functions 

defined on the surface of a sphere. Their main 

advantage is that each function defined on the 

surface of a sphere can be written as a sum of 

spherical harmonics.  

If we assume that the square-integrable 2-D 

spatial function f(x) = f(λ, ϕ) is specified on a sphere 

ΩR, it can be defined as a series expansion in terms 

of spherical harmonics Yn,m (λ, ϕ), which is 

computable using relations from the associated 

Legendre function Pn,m(sin ϕ) of order m and degree 
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n . Values cn,m are the coefficients of the spherical 

harmonics. In numerical applications, truncating the 

expansion at finite degree n = N is needed, such that 

the double sum would be composed of all N′ = (N + 

1)2 words (8). 

            ƒ(𝜆, 𝜑) =
∑ ∑ 𝑐𝑛,𝑚𝑌𝑛,𝑚(𝜆, 𝜑)

𝑛
𝑚=−𝑛

∞
𝑛=0    (1) 

 

            𝑌𝑛,𝑚(𝜆, 𝜑) =

{
 

 
𝑃𝑛,𝑚(𝑠𝑖𝑛𝜑)𝑐𝑜𝑠𝑚𝜆

𝑓𝑜𝑟 𝑚 = 0,… , 𝑛

𝑃𝑛,|𝑚|(𝑠𝑖𝑛𝜑)𝑠𝑖𝑛|𝑚|𝜆

𝑓𝑜𝑟 𝑚 = −𝑛,… ,−1

  

(2) 
In the PCV model estimation, spherical 

harmonics are fitted into a set of observation data 

with the least squares (LS) method. The minimum of 

the LS objective function, which is: 

                               ∑𝑣𝑣 = 𝑚𝑖𝑛                            (3) 

must be calculated in the process (where v is a 

residuum). The minimum can be found using various 

approaches to objective function minimization. In 

this article we have tested following methods: 

SLSQP, CG, Powell, BFGS, Newton-CG,  

L-BFGS-B, TNC, Cobyla, trust-constr. LS fitting 

can be done by solving a set of normal equations 

defined as: 

                          𝑉 = (𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃𝐿                        

(4) 

This approach is often not optimal in the scope of 

computational efficiency. Therefore in this paper, 

we compare other, numerical methods of finding 

the objective function minimum. 
 

2. METHODS 

 

There are many methods for finding the 

minimum of the objective function. In order to find 

a more optimal algorithm, a total of nine methods 

were selected and then tested. Below is a brief 

description of each algorithm: 
1. SLSQP: is a gradient-based method for solving 

nonlinear optimization problems with 

constraints. The problem is solved iteratively for 

a local minimum (4). 
2. CG: it is based on selecting orthogonal search 

directions n and then, in each direction, 

performing one step, the size of which should 

correspond to the proposed solution x in that 

direction. The CG method is useful for large and 

sparse problems since the number of iterations in 

this method is not greater than the number n (10). 

3. Powell: the algorithm uses a two-way search. It 

first moves in one direction until it finds a local 

minimum. Then it performs the same in the other 

direction. This process is repeated for subsequent 

directions until the fit statistic for a given 

iteration is minimized. The algorithm terminates 

when no significant improvement is achieved in 

subsequent iterations (3). 

4. BFGS: The descent direction is determined by 

preconditioning the gradient using curvature 

information. This is done by successively 

improving the approximation of the loss 

function's hessian matrix, which is extracted 

from the gradient evaluations or their 

approximations using the generalized secant 

method (1). 

5. Newton–CG: uses conjugate gradient (CG) 

method to the second-order Taylor-series 

approximation of f around the current iterate  

xk (7). 

6. L-BFGS-B: this method is an extension of the  

L-BFGS algorithm, which aims to minimize the 

differentiable scalar function f(x) over 

unconstrained values of the real vector x. The L-

BFGS-B method, unlike the L-BFGS method, 

can handle bounds imposed on the variables (11). 

7. TNC: this method to determine an update to the 

function's parameters approximately solves 

Newton's equations by repeatedly applying the 

optimization algorithm. The inner solver runs for 

only a limited number of iterations. This implies 

that the inner solver must return a good 

approximation in a finite number of iterations for 

the method to work (5). 

8. Cobyla: is based on approximating an actual 

constrained optimization problem using linear 

programming problems. A candidate for the 

optimal solution is obtained by solving the 

problem in a single iteration. The acquired 

candidate is then evaluated using objective and 

constraint functions, resulting in a new data point 

in the optimization space. Then, the 

approximation of the linear programming 

problem used in the next iteration is improved 

using the acquired information. If the solution 

cannot be improved, the step size is reduced, thus 

improving the search. The cycle repeats until the 

step size is small enough (6). 

9. trust-constr: depending on the problem 

definition, the method uses one of two 

implementations: trust-region sequential 

quadratic programming solver or trust-region 

interior point method. The first is used for 

problems with inequality constraints. The second 

is when inequality constraints are imposed (12). 

 

2.1. Data acquisition 

The research aims to determine the most optimal 

method for calculating the parameters of a spherical 

harmonic in terms of time and correctness of the 

result. The research scope includes 9 minimization 

algorithms: SLSQP, CG, Powell, BFGS, Newton-

CG, L-BFGS-B, TNC, Cobyla, trust-constr. The 

most optimal algorithm is selected by testing the 

methods on a single set of measurement data 

acquired with a GNSS antenna during actual field 

measurements and then comparing the tested 

quantities, i.e., calculation time and root mean 

square (RMS) value. The field measurements were 

collected by authors using the GNSS antenna 
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calibration facility developed at the University of 

Warmia and Mazury in Olsztyn, Poland. 

 

2.2. Compared values 

To compare the efficacy of objective function 

minimization methods, two quantities were used: the 

method processing time understood as a time 

required by a computer to obtain a correct solution, 

and the root mean square (RMS) calculated on the 

basis of residuals. 

                           𝑅𝑀𝑆 = √
∑ v𝑖

2𝑛
𝑖=1

𝑛
                          (5) 

Due to processes taking place in computer 

processors, individual time measurements of a given 

method may vary slightly. In order to obtain a 

reliable result, the execution time of each method 

was measured 10 times and then the average value 

was calculated. Time measurement was started 

exactly before the method was performed and ended 

immediately after. Below is a fragment of code for 

time measurement written in Python. 
start_time = datetime.now() 
x=minimize(residuals_differential,
x0,args=(m,l,dane), method=method, 
tol=0.001,options={'maxiter': 
10000}) 
end_time = datetime.now() 

The first and last lines of the code recorded the time 

before the algorithm was run and after it was 

completed. Based on the difference of these values, 

the execution time of the method was determined. 

Between the time measurements, the algorithm of 

the method is run. The parameters of the function 

vary depending on the method used. 

 

3. NUMERICAL EXPERIMENTS 

 

3.1. Input data 

In order to obtain a correct PCV model, the 

acquired observations should be spread over the 

entire hemisphere of the antenna. In order to acquire 

such data, a precision robot was used, which has the 

ability to rotate and tilt the antenna. The antenna took 

measurements at 1-second intervals. The resulting 

observations include zenith angle and azimuth for 

the antenna in two epochs t and t+1, along with time 

differences of a single difference (TDSD), which can 

be defined as the difference of two consecutive 

single differences. Given a phase observation: 

𝜙𝑓𝐴
𝑗
= 𝜌𝐴

𝑗
+ 𝑐(𝛿𝑡𝐴 − 𝛿𝑡

𝑗) + 𝜆𝑓𝑁𝑓𝐴 + (𝛿𝜙𝑓𝐴 −

𝛿𝜙𝑓
𝑗
) + 𝑇𝑓𝐴

𝑗
− 𝐼𝑓𝐴

𝑗
+𝑀𝑃𝑓𝐴

𝑗
+ 𝑃𝐶𝑉𝑓𝐴 + 𝜉

𝑗𝑓𝐴         (6) 

The single difference of observations at epoch t can 

be defined as: 

𝜙𝑓𝐴𝐵
𝑗 (𝑡) = 𝜙𝑓𝐴

𝑗 (𝑡) − 𝜙𝑓𝐵
𝑗 (𝑡) = 𝜌𝐴𝐵

𝑗
+

𝜆𝑓𝑁𝑓𝐴𝐵 + 𝛿𝜙𝐴𝐵 +𝑀𝑃𝑓𝐴𝐵
𝑗
+ 𝑃𝐶𝑉𝑓𝐴𝐵 +

𝜉𝑗𝑓𝐴𝐵                    (7) 

Since the distance between two antennas is very 

small (up to few meters) the ionospheric and 

tropospheric effects are cancelled. To remove the 

receiver clock error, both receivers are connected to 

the common frequency source (the rubidium 

oscillator in this case). Hence TDSD is defined as: 

𝛥𝜙𝑓𝐴𝐵
𝑗 (𝑡, 𝑡 + 1) = 𝜙𝑓𝐴𝐵

𝑗 (𝑡) − 𝜙𝑓𝐴𝐵
𝑗 (𝑡, 𝑡 +

1) = 𝜌𝐴𝐵
𝑗
+ 𝑃𝐶𝑉𝑓𝐴𝐵 + 𝜉

𝑗𝑓𝐴𝐵                                    

(8) 

The geometric term 𝜌𝐴𝐵
𝑗

 can be calculated on the 

basis of known receiver positions and precise orbits. 

On this basis the set of normal equations are created 

and the PVC model can be estimated. 

 
Table 1. Observations sample. 

t t+1 
TDSD 

[mm] Zenith 

angle [°] 

Azimuth  

[°] 

Zenith 

angle [°] 

Azimuth  

[°] 

1.8326 5.9167 1.6930 0.2967 24.93 

2.5133 4.3284 2.2864 5.1662 23.60 

1.7628 5.5152 0.0175 6.2134 22.84 

0.4712 5.9865 0.5585 0.5411 28.54 

2.3736 4.3982 2.1293 5.1836 29.50 

2.3562 6.1785 2.7227 5.2534 -20.17 

2.0246 1.1868 1.7279 1.3439 -26.83 

2.0944 0.7330 1.6232 0.9774 -27.78 

0.2443 0.9599 0.5411 1.5359 -23.79 

1.0996 3.2812 0.4887 3.5605 -8.94 

0.5934 4.0841 0.2443 0.9599 27.21 

1.5882 6.2308 1.6406 3.7874 10.47 

2.1293 4.8520 2.1991 2.3911 18.84 

0.1745 5.8643 0.1047 3.4208 7.99 

0.6109 0.2967 0.5934 4.0841 10.47 

1.9722 4.8695 2.0420 2.4086 24.36 

0.2269 2.1642 0.3142 6.0039 8.75 

 

3.2. Processing 

The compared methods were tested in the same 

environment to avoid the impact of changes in 

technology on calculation time measurements and 

for the same parameters n and m (degree and order 

expansion), which were set to the value of 5. 

However, it is difficult to determine the correctness 

of the methods without knowing the result they 

should return. For the comparison of methods to 

make sense, it is necessary to assume some valid 

values for the polynomial parameters. For this 

purpose, the polynomial parameters obtained by the 

method of least squares were taken as correct values. 

These values, burdened by randomly generated 

numbers from 0 to 1, were then used as initial 

parameters for estimation using tested methods. 
Each method takes a tolerance parameter, which 

is responsible for the precision of the results and 

affects the number of iterations performed by the 

algorithm. This parameter was defined individually 

for each method in order to obtain enough iterations 

to observe the stabilization of the value of the sum of 

residuals difference calculated at the end of each 
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iteration using the callback function. The process of 

adjusting the tolerance parameter was done through 

Convergence charts analysis. 

 

4. DISCUSSION 

 

The results of the analyses were the average 

execution time obtained from 10 samples and RMS 

values for each method (Table 2). A Convergence 

graph was also plotted for each method. 

 

4.1. Time and RMS values 

The fastest method was the Newton-CG, which 

performed calculations in just 0.01 s. The second 

fastest algorithm was the Cobyla method, for which 

the average calculation time was 5.71 s. In contrast, 

the longest calculation was performed by the Powell 

method 113.37 s. The RMS values are very similar 

for all methods and vary by 1 of ten-thousandths of 

a millimeter for most of them. Only the RMS value 

for the Newton-CG method deviates from the rest 

and has the highest value. Therefore, it can be 

observed that the Newton-CG method is the fastest 

but also the least accurate. 

 
Table 2. Time and RMS values. 

Method Time [s] RMS [mm] 

SLSQP 6.75 6.7260889 

CG 33.55 6.7260828 

Powell 113.37 6.7260830 

BFGS 21.61 6.7260827 

Newton-CG 0.01 6.7274891 

L-BFGS-B 6.14 6.7260842 

TNC 42.38 6.7261893 

Cobyla 5.71 6.7260976 

trust-constr 26.27 6.7260827 

 

4.2. Convergence graphs 

Convergence graphs for each method except the 

Newton-CG method are included below. This 

method, with the assumed parameters, performed in 

one iteration therefore the graph was abandoned. 

 
Fig. 1. Convergence of SLSQP method. 

 

The algorithm completed calculations in 16 

iterations. In the first iteration, the value of sum of 

relative residuals reached 26.2672 mm. From the 

10th iteration onward, the value began to circulate 

close to the value of 14 mm. In the last iteration, it 

amounted to 14.13141 mm. 

 
Fig. 2. Convergence of CG method. 

 

The algorithm completed calculations in 53 

iterations. In the first iteration, the value of sum of 

relative residuals reached 14.1254 mm. After that it 

dropped drastically and from around the 25th 

iteration onward, the value began to circulate close 

to the value of 14.04 mm. In the last iteration, it 

amounted to 14.0332 mm. 

 
Fig. 3. Convergence of Powell method. 

 

The algorithm completed calculations in 13 

iterations. In the first iteration, the value of sum of 

relative residuals reached 13.9232 mm. From 7th 

iteration onward, the value began to circulate close 

to the value of 14.04 mm. In the last iteration, it 

amounted to 14.0496 mm. 

 
Fig. 4. Convergence of BFGS method. 
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The algorithm completed calculations in 45 

iterations. In the first iteration, the value of sum of 

relative residuals reached 14.1254 mm. From 8th 

iteration onward, the value began to circulate close 

to the value of 14.04 mm. In the last iteration, it 

amounted to 14.0357 mm. 

 
Fig. 5. Convergence of L-BFGS-B method. 

 

The algorithm completed calculations in 12 

iterations. In the first iteration, the value of sum of 

relative residuals reached 14.1254 mm. From 6th 

iteration onward, the value began to circulate close 

to the value of 14.04 mm. In the last iteration, it 

amounted to 14.0374 mm. 

 
Fig. 6. Convergence of TNC method. 

 

The algorithm completed calculations in 15 

iterations. In the first iteration, the value of sum of 

relative residuals reached 13.5678 mm. From 12th 

iteration onward, the value began to circulate close 

to the value of 13.79 mm. In the last iteration, it 

amounted to 13.7895 mm. 

 
Fig. 7. Convergence of COBYLA method. 

 

The algorithm completed calculations in 519 

iterations. In the first iteration, the value of sum of 

relative residuals reached 13.5879 mm. From 300th 

iteration onward, the value began to circulate close 

to the value of 14 mm. In the last iteration, it 

amounted to 14.0881 mm. 

 
Fig. 8. Convergence of trust-constr method. 

 

The algorithm completed calculations in 64 

iterations. In the first iteration, the value of sum of 

relative residuals reached 13.5879 mm. From 30th 

iteration onward, the value began to circulate close 

to the value of 14.04 mm. In the last iteration, it 

amounted to 14.0353 mm. 

 

5. CONCLUSIONS 

 

This paper presents nine algorithms for 

minimizing the objective function applied to 

spherical harmonics fitting: SLSQP, CG, Powell, 

BFGS, Newton-CG, L-BFGS-B, TNC, Cobyla, 

trust-const. The algorithms were tested to compare 

the calculation time and accuracy of the results. The 

calculation time measurement was determined as the 

average of 10 measures, while the calculation 

accuracy was compared using root mean square 

value (RMS). 

The obtained RMS values for all methods except 

the Newton-CG method were very close to each 

other and differed by 1 of ten thousandths of a 

millimetre. The Newton-CG algorithm got the 

highest RMS value. However, its execution time was 
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the shortest, taking only 0.01 s. The execution times 

of the other methods ranged from 5 s to  

 114 s. 

Based on the results obtained, the most optimal 

method in terms of time and accuracy for performing 

this type of calculation is the Cobyla algorithm. 

However, if the priority is the calculation time, then 

the Newton-CG method will be the best. 
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