PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of mitigating alkali reactivity of gravel aggregate

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sposoby ograniczenia reaktywności kruszywa żwirowego
Języki publikacji
EN
Abstrakty
EN
Effectiveness of selected chemical admixtures and mineral additives to mitigate alkali-silica reaction was compared based on reactive gravel aggregate. Lithium compounds in the form of nitrate and lithium polysilicate were used as chemical admixtures. Natural pozzolans containing zeolite were used as mineral additive. Efficiency of the additive was enhanced by modification with ammonium ions. Linear changes of mortars with crushed gravel aggregates were studied with the accelerated and long-term methods. Additionally, scanning electron microscopy was used for microstructural observations. It was demonstrated that at elevated temperatures the application of lithium compounds provided better protection. Under conditions similar to those in the field, 20-30% of natural pozzolans proved to be more effective in inhibiting the expansion. Regardless of the method of protection applied, the presence of alkali-silica reaction products was detected in the microstructure of the mortars.
PL
Na przykładzie reaktywnego kruszywa żwirowego porównano efektywność ograniczenia reakcji alkalia-kruszywo przy pomocy wybranych domieszek chemicznych i dodatków mineralnych. Jako domieszki chemiczne zastosowano związki litu w postaci azotanu i polikrzemianu litu. W przypadku dodatków mineralnych zastosowano naturalną pucolanę, zawierającą zeolit, której efektywność zwiększano poprzez modyfikację jonami amonowymi. Wykonano badania zmian liniowych zapraw z rozdrobnionym kruszywem żwirowym metodą przyspieszoną i długoterminową. Dodatkowo wykonano obserwacje mikrostruktury z wykorzystaniem elektronowego mikroskopu skaningowego. Wykazano, że w warunkach podwyższonej temperatury lepsze zabezpieczenie uzyskano po zastosowaniu związków litu. W warunkach zbliżonych do eksploatacyjnych zastosowanie 20-30% pucolany naturalnej skuteczniej hamowało ekspansję zapraw z kruszywem reaktywnym. Niezależnie od sposobu zabezpieczenia, w mikrostrukturze zapraw wykryto obecność produktów reakcji alkalia-krzemionka.
Rocznik
Strony
102--109
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
  • Kielce University of Technology, Poland
Bibliografia
  • [1] Rajabipour F., Giannini, E., Dunant C., Ideker J.H.,Thomas M.D.A., Alkali-Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps. Cement and Concrete Research, 76 (2015), 130-146.
  • [2] Sims I., Poole A.B., Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press, 2017.
  • [3] Shi Z., Geng G., Leemann A., Lothenbach B., Synthesis, Characterization and Water Uptake Property of Alkali-Silica Reaction Products. Cement and Concrete Research, 121 (2019), 58-71.
  • [4] Shi Z., Leemann A., Rentsch D., Lothenbach B., Synthesis of Alkali-Silica Reaction Product Structurally Identical to that Formed in Field concrete. Materials and Design, 190 (2020), 108562.
  • [5] Shi Z., Park S., Lothenbach B., Leemann A., Formation of Shlykovite and ASR-P1 in concrete under Accelerated Alkali-Silica Reaction at 60 and 80°C. Cement and Concrete Research, 137 (2020), 106213.
  • [6] Stark D., Morgan B., Okamoto P., Eliminating or Minimizing Alkali-Silica Reactivity. Issue SHRP-C-343, 1993.
  • [7] Stark D., The Moisture Condition of Field concrete Exhibiting Alkali-Silica Reactivity. Spec. Publ., 126 (1991), 973-988.
  • [8] Leemann A., Shi Z., Wyrzykowski M., Winnefeld F., Moisture Stability of Crystalline Alkali-Silica Reaction Products Formed in concrete Exposed to Natural Environment. Materials & Design, 195 (2020), 109066.
  • [9] Bagheri M., Lothenbach B., Shakoorioskooie M., Leemann A., Scrivener K., Use of Scratch Tracking Method to Study the Dissolution of alpine Aggregates Subject to Alkali Silica Reaction. Cement and Concrete Composites, 124 (2021), 104260.
  • [10] McCoy W.J., Caldwell A.G., New Approach to Inhibiting Alkali-Aggregate Expansion. J. Proc. 47 (5) (1951), 693-706.
  • [11] Mitchell L.D., Beaudoin J.J., Grattan-Bellew P., The Effects of Lithium Hydroxide Solution on Alkali Silica Reaction Gels Created with Opal. Cement and Concrete Research, 34 (4) (2004), 641-649.
  • [12] Demir İ., Arslan M., The Mechanical and Microstructural Properties of Li2SO4, LiNO3, Li2CO3 and Li Br Added Mortars Exposed to Alkali-Silica Reaction. Construction and Buildings Materials, 42 (2013), 64-77.
  • [13] Zapała-Sławeta J., Owsiak Z., The role of lithium compounds in mitigating alkali-gravel aggregate reaction. Construction and Building Materials, 115 (2016), 299-303.
  • [14] Durand B., More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete Proceedings of 11th International Conference of Alkali Aggregate Reaction, Quebec, Canada, 623 (2000), 632-362.
  • [15] Lane D.S., Laboratory investigation of lithium-bearing compounds for use in concrete. Final Report No. VTRC 02-R16, Virginia Transportation Research Council, 2002.
  • [16] Tremblay C., Bérubé M.A., Fournier B., Thomas M.D., Folliard K.J., Experimental investigation of the mechanisms by which LiNO3 is effective against ASR. Cement and Concrete Research, 40 (2010), 583-597.
  • [17] Feng X., Thomas M.D.A., Bremner T.W., Folliard K.J., Fournier B., Summary of research on the effect of LiNO3 on alkali–silica reaction in new concrete. Cement and Concrete Research, 40 (2010), 636-642.
  • [18] Berra M., Mangialardi T., Paolini A.E., Use of lithium compound to prevent expansive alkali silica reactivity in concrete. Advance Cement Research, 15 (2003), 145-154.
  • [19] Owsiak Z., Zapała-Sławeta J., Czapik P., Sources of the Gravel Aggregate Reaction with Alkalis in Concrete. Cement Wapno Beton, XVII, 3 (2012), 149-153.
  • [20] Czapik P., Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar. Materials, 11 (6) (2018), 1-14.
  • [21] Niu Q., Feng N., Effect of modified Zeolite on the expansion of alkaline silica reaction, Cement and Concrete Research 35 (2005), 1784-1788.
  • [22] Ames Jr. L.L., Zeolitic removal of ammonium ions from agricultural and other wasters, 13th Pacific Northwest Industrial Waste Conference, Washington 1967.
  • [23] Chmielewská E., Prirodná nerudná surovina a jej enviromentálne vlastnosti, Vodohospodársky spravodajca 5-6 (2011), 20-21.
  • [24] ASTM C1260-14, Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), ASTM International, West Conshohocken, PA, USA, 2014.
  • [25] ASTM C227-10. Standard Test Method for Potential Alkali Reactivity of Cement - Aggregate Combinations (Mortar-Bar Method); ASTM International: West Conshohocken, PA, USA, 2010.
  • [26] Małolepszy J., Grabowska E., The influence of zeolites on the process of hydration of mineral binders, Budownictwo i Architektura 12 (3) (2013), 185-192.
  • [27] Czapik P., Owsiak Z., The influence of zeolite subjected to ion exchange with ammonium chloride on the reaction of sodium and potassium hydroxide with gravel aggregate. Cement Wapno Beton, 21 (2) (2016), 79-85.
  • [28] Czapik P., Czechowicz M., Effects of natural zeolite particle size on the cement paste properties, Structure and Environment, 9 (3) (2017), 180-190.
  • [29] Cyr M., Pouhet R., Resistance to alkali-aggregate reaction (AAR) of alkali-activated cement-based binders [w:] Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, 2015.
  • [30] Owsiak Z., Internal corrosion of concrete. Wydawnictwo Politechniki Świętokrzyskiej, Kielce 2015.
  • [31] Zapała-Sławeta J., Owsiak Z., Selected methods of reducing the effects of gravel aggregate reactivity. Inżynieria i Budownictwo, 76 (11) (2020), 542-546.
  • [32] Regourd M., Hornain H., Microstructure of reaction products. 7th International Conference of Alkali-Aggregate Reaction, Ottawa, 1986, 375-380.
Uwagi
1. This article was prepared for the 22nd Scientific and Technical Conference KONTRA 2022 - Durability of Structures and Protection against Corrosion, Warsaw - Cedzyna/near Kielce, October 13-14, 2022.
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65d37069-397a-4e9a-91c4-183f638a74cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.