PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Novel Method for Elimination of Inconsistencies in Ordinal Classification with Monotonicity Constraints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to handle inconsistencies in ordinal and monotonic information systems, several relaxed versions of the Dominance-based Rough Set Approach (DRSA) have been proposed, e.g., VC-DRSA. These versions use special consistency measures to admit some inconsistent objects in the lower approximations. The minimal consistency level that has to be attained by objects included in the lower approximations is defined using a prior knowledge or a trial-and-error procedure. In order to avoid dependence on prior knowledge, an alternative way of handling inconsistencies is to iteratively eliminate the most inconsistent objects (according to some measure) until the information system becomes consistent. This idea is a base of a new method of handling inconsistencies presented in this paper and called TIPStoC. The TIPStoC algorithm is illustrated by an example from the area of telecommunication and the efficiency of the new method is proved by a computational experiment.
Wydawca
Rocznik
Strony
377--395
Opis fizyczny
Bibliogr. 25 poz., tab.
Twórcy
autor
  • School of Information Science and Technology, Southwest Jiaotong Univ. 610031 Chengdu, China
autor
  • School of Information Science and Technology, Southwest Jiaotong Univ. 610031 Chengdu, China
autor
  • Inst. of Elect. Inform. Tech. Chongqing Inst. of Green and Intel. Tech., CAS, 401122 Chongqing, China
  • Institute of Computing Science, Poznań Univ. of Tech. 60-965 Poznań, Poland
  • Institute of Computing Science, Poznań Univ. of Tech. 60-965 Poznań, Poland
autor
  • Institute of Computing Science, Poznań Univ. of Tech. 60-965 Poznań, Poland
Bibliografia
  • [1] Ben-David, A.: Monotonicity maintenance in information-theoretic machine learning algorithms, Machine Learning, 19(1), 1995, 29-43.
  • [2] Ben-David, A., Sterling, L., Tran, T: Adding monotonicity to learning algorithms may impair their accuracy, Expert Systems with Applications, 36(3), 2009, 6627-6634.
  • [3] Błaszczynski, J., Greco, S., Słowinski, R.: Multi-criteria classification - A new scheme for application of dominance-based decision rules, European Journal of Operational Research, 181(3), 2007, 1030-1044.
  • [4] Błaszczynski, J., Greco, S., Słowinski, R.: Inductive discovery of laws using monotonic rules, Engineering Applications of Artificial Intelligence, 25(2), 2012, 284-294.
  • [5] Błaszczynski, J., Greco, S., Słowinski, R., Szeląg, M.: On Variable Consistency Dominance-Based Rough Set Approaches, Rough Sets and Current Trends in Computing 2006 (S. Greco, Y. Hata, S. Hirano, M. Inuiguchi, S. Miyamoto, H. S. Nguyen, R. Słowinski, Eds.), 4259, Springer-Verlag, Berlin Heidelberg, 2006.
  • [6] Błaszczynski, J., Greco, S., Słowinski, R., Szelag, M.: Monotonic Variable Consistency Rough Set Approaches, Rough Sets and Knowledge Technology 2007 (J. Yao, P. Lingras, W. Wu, M. Szczuka, N. J. Cercone, D. Slezak, Eds.), 4481, Springer-Verlag, Berlin Heidelberg, 2007.
  • [7] Błaszczynski, J., Greco, S., Słowinski, R., Szelag, M.: Monotonic Variable Consistency Rough Set Approaches, International Journal of Approximate Reasoning, 50(7), 2009, 979-999.
  • [8] Błaszczynski, J., Słowinski, R., Szelag, M.: Learnability in Rough Set Approaches, RSCTC 2010 (M. Szczuka, et al., Eds.), 6086, Springer-Verlag, Berlin Heidelberg, 2010.
  • [9] Błaszczynski, J., Słowinski, R., Szelag, M.: Probabilistic Rough Set Approaches to Ordinal Classification with Monotonicity Constraints, IPMU 2010 (E. Hullermeier, R. Kruse, F. Hoffmann, Eds.), 6178, Springer- Verlag, Berlin Heidelberg, 2010.
  • [10] Błaszczynski, J., Słowinski, R., Szelag, M.: Sequential Covering Rule Induction Algorithm for Variable Consistency Rough Set Approaches, Information Sciences, 181, 2011, 987-1002.
  • [11] Daniels, H., Kamp, B.: Applications of MLP networks to bond rating and house pricing, Neural Computation and Applications, 8, 1999, 226-234.
  • [12] Deng, W., Wang, G., Hu, F.: An improved variable precision model of dominance-based rough set approach, RSFDGrC 2011 (K. Sergei O., S. Dominik, H. Daryl H., M. Boris G., Eds.), 6743, Springer-Verlag, Berlin Heidelberg, 2011.
  • [13] Deng, W., Wang, G., Yang, S., Hu, F.: A New Method for Inconsistent Multicriteria Classification, RSKT 2011 (J. Yao, S. Ramanna, G. Wang, Z. Suraj, Eds.), 6954, Springer-Verlag, Berlin Heidelberg, 2011.
  • [14] Greco, S., Matarazzo, B., Słowinski, R.: Rough Sets Theory for Multicriteria Decision Analysis, European Journal of Operational Research, 129(1), 2001, 1-47.
  • [15] Greco, S., Matarazzo, B., Słowiński, R.: Rough Sets Methodology for Sorting Problems in Presence of Multiple Attributes and Criteria, European Journal of Operational Research, 138(2), 2002, 247-259.
  • [16] Greco, S., Matarazzo, B., Słowinski, R.: Granular computing for Reasoning About Ordered Data: the Dominance-Based Rough Set Approach, in: Handbook ofGranular Computing (W. Pedrycz, A. Skowron, V Kreinovich, Eds.), chapter 15, John Wiley & Sons, Ltd, Chichester, 2008, 347-373.
  • [17] Greco, S., Matarazzo, B., Słowinski, R., Stefanowski, J.: Variable consistency model of dominance-based rough set approach, RSCTC 2000 (W. Ziarko, Y. Yao, Eds.), 2005, Springer-Verlag, Berlin Heidelberg, 2001.
  • [18] Inuiguchi, M., Yoshioka, Y.: Variable-Precision Dominance-Based Rough Set Approach, RSCTC 2006 (S. Greco, H. Yukata, H. Shoji, I. Masahiro, M. Sadaaki, N. Hung Son, Eds.), 4259, Springer-Verlag, Berlin Heidelberg, 2006.
  • [19] Koop, G.: Analysis of Economic Data, John Wiley and Sons, 2000.
  • [20] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, Netherlands, 1991.
  • [21] Słowinski, R., Greco, S., Matarazzo, B.: Rough Set Based Decision Support, in: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (E. K. Burke, G. Kendall, Eds.), chapter 16, Springer-Verlag, New York, 2005,475-527.
  • [22] Słowinski, R., Greco, S., Matarazzo, B.: Rough Sets in Decision Making, in: Encyclopedia of Complexity and Systems Science (R. A. Meyers, Ed.), Springer, New York, 2009, 7753-7786.
  • [23] Wang, G., He, X.: A Self-Learning Model under Uncertain Condition, Chinese Journal of software, 14(6), 2003, 1096-1102.
  • [24] Wang, G., Wang, Y.: 3DM: Domain-Oriented Data-Driven Data Mining, Fundamenta Informaticae, 90(4), 2009, 395-426.
  • [25] Yao, Y., Wang, F., Wang, J.: “Rule + Exception” Strategies for Knowledge Management and Discovery, RSFDGrC 2005 (D. Slezak, J. Yao, J. F. Peters, W. Ziarko, Eds.), 3642, Springer-Verlag, Berlin Heidelberg, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65c7fbdd-bed5-48d9-917c-b9f870b45313
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.