PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculating study of the turbine at last stage flow field in the small volume flow condition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on basic equation and boundary layer theory of pneumodynamics, the thesis conducts numerical modeling and theoretical analysis on the last stage of turbine characteristics at a small volume flow by using FLUENT, gives an emphasized analysis on the position of first occurrence of backflow and its expansion direction and comes up with flow structure of the turbine flow field at last stage in the small volume flow condition. In connection with specific experiments, it puts forward the flow model of backflow occurring in the last stage field and the solution to the model. The flow field at last stage for a 100MW turbine in the small volume flow condition that is calculated by using the model is basically in conformity to the actual result.
Słowa kluczowe
Rocznik
Tom
S 3
Strony
23--27
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • School of Energy and Power Engineering Northeast Electric Power University Jinlin 132012 China
autor
  • School of Energy and Power Engineering, Northeast Electric Power University, China
autor
  • School of Energy and Power Engineering, Northeast Electric Power University, China
autor
  • School of Energy and Power Engineering, Northeast Electric Power University, China
autor
  • School of Energy and Power Engineering, Northeast Electric Power University, China
Bibliografia
  • 1. Z. Q. Cao, 1991. The steam turbine operation mode features. China Water Power Press.
  • 2. J. G. Jin, T. L. Jiang, Y. Li, L. H. Cao, 2011. Large steam turbine rotor blades out of the late-stage research and analysis of the steam side erosion. Turbine Technology, 53 (3), 199-201.
  • 3. Q. Liu, 2007.End-stage blade of steam turbine erosion mechanism analysis and Stellite piece replacement study. Shanghai Jiaotong University.
  • 4. G. S. Xie, 2008.Turbine last stage blades Anti-erosion carbon nitride titanium nitride composite coating preparation and basic research. Central South University.
  • 5. W. L. Xu, J. D. Wang, D.R. Chen, F. B. Liu, 2010.Last stage of turbine blade erosion bench design.Journal of Tsinghua UniversityNatural Sciences, 50(8), 1201-1204.
  • 6. J. S. Rao, 1998. Application of fracture mechanics in the failure analysis of a last stage steam turbine blade. Mechanism and Machine Theory. 33, 599-609.
  • 7. Z. B. Zhang, Y. J. Tian, L. H. Cao, Y. Sun, 2013. Numerical analysis of flow field within the turbine stage small volume flow conditions. Chemical Machinery. 40 (1), 94-97.
  • 8. X. S. Cai, T. B. Ning, F. X. Niu, G. C. Wu, Y. Y. Song, Z. T. Sang, Z. L. Xu, C. S. Cen, Y. F. Guo, J. Zhang, G. Li, 2008. Low pressure turbine 300 MW Direct Air Flow Field in the last stage of blast and humidity measurement. Chinese Society for Electrical Engineering. 28 (26), 7-13.
  • 9. W. Gerschutz, M. Casey, F.Truckenmuller, 2005. Experimental investigations of rotating flow instabilities in the last stage of a low-pressure model steam turbine during windage. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 219 (6), 499-510.
  • 10. H. T. Wang, X. C. Zhu, H., D. Yang, W. Zhou, C. H. Du, 2009. Numerical Optimization Design of Turbine Low Pressure Exhaust Hood. Power Engineering. 29 (1), 40-45.
  • 11. W. L. Xie, H. T. Wang, X. C. Zhu, 2011. Analysis of the steam turbine low pressure cylinder exhaust diversion baffles affect its performance. Power Engineering. 31(5), 347-351.
  • 12. H. T. Wang, X. C. Zhu, Z. H. Du, 2010. Aerodynamic optimization for low pressure turbine exhaust hood using Kriging surrogate model. International Communications in Heat and Mass Transfer. 37(8), 998-1003.
  • 13. W. Zhang, Paik, Bu.Geun, Jang, Young Gil, 2007. Particle image velocimetry measurements of the three-dimensional flow in an exhaust hood model of a low-pressure steam turbine. Journal of Engineering for Gas Turbines and Power. 129(2), 411-419.
  • 14. V. V. Ris, L. L. Simoyu, 2009. Numerical simulation of flow in a steam-turbine exhaust hood: Comparison results of calculations and data from a full-scale experiment. Thermal Engineering English translation of Teploenergetika. 56(4), 277-283.
  • 15. X. S. Cai, T. B. Ning, F. X. Niu, G. C. Wu, Y. Y. Song, Z. T. Sang, Z. L. Xu, C. S. Cen, Y. F. Guo, J. Zhang, G. Li, 2009. 300MW Direct Air Turbine last stage low pressure wet steam Measurement. Chinese Society for Electrical Engineering. 29(2), 1-7.
  • 16. L. Qi, Z. P. Zou, H. Z. Lu, E. L. Yu, D. Q. Tian, L. M. Shi, 2005. Numerical Simulation of Air Cooled Turbine Last Two Stages three-dimensional flow. Power Engineering. 25(5), 647-651.
  • 17. L. Qi, N. Zheng, H. G. Cheng, 2005. Numerical Simulation of the last stage turbine unsteady flow. Journal of Beijing University of Aeronautics and Astronautics. 31(2), 206-211.
  • 18. J. L. Fu, J. J. Liu, 2008. Influences of inflow condition on non-axisymmetric flows in turbine exhaust hoods, Journal of Thermal Science. 17(4), 305-313.
  • 19. J. J. Liu, T. P. Hynes, 2003. The investigation of turbine and exhaust interactions in asymmetric flows-blade-row models applied. Transactions of the ASME. Journal of Turbomachinery. 125(1), 121-127.
  • 20. L. J. Huang, 1978. About streamline curvature, Computational Mathematics. Volume 1, Section 1.
  • 21. S. Hao, Q. H. Deng, H. S. Shi, Z. P. Shi, K. Cheng, Z. Y. Peng, 2013. The end of the steam turbine Numerical study of three scheduled regular flow under different volumetric flow. Journal of Xi’an Jiaotong University. 47(1), 15-20. (In Chinese)
  • 22. L. J. Huang, 1978, about streamline curvature, Computational Mathematics. Volume 1, Section 1.
  • 23. Y. L. Zhou, 2010. Multiphase flow parameters detection theory and its application. Science and Technology Press.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65c7c9d1-5392-46ef-8e43-ba7bb20d7adc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.