Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper proposes to apply an algorithm for predicting the minimum level of the state of charge (SoC) of stationary supercapacitor energy storage system operating in a DC traction substation, and for changing it over time. This is done to insure maximum energy recovery for trains while braking. The model of a supercapacitor energy storage system, its algorithms of operation and prediction of the minimum state of charge are described in detail; the main formulae, graphs and results of simulation are also provided. It is proposed to divide the SoC curve into equal periods of time during which the minimum states of charge remain constant. To predict the SoC level for the subsequent period, the learning algorithm based on the neural network could be used. Then, the minimum SoC could be based on two basic types of data: the first one is the time profile of the energy storage load during the previous period with the constant minimum SoC retained, while the second one relies on the trains’ locations and speed values in the previous period. It is proved that the use of variable minimum SoC ensures an increase of the energy volume recovered by approximately 10%. Optimum architecture and activation function of the neural network are also found.
Rocznik
Tom
Strony
733--738
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, Koszykowa Street 75, Mechanics Building, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, Koszykowa Street 75, Mechanics Building, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, Koszykowa Street 75, Mechanics Building, 00-662 Warsaw, Poland
autor
- Warsaw University of Technology, Electrical Power Engineering Institute, Koszykowa Street 75, Mechanics Building, 00-662 Warsaw, Poland
Bibliografia
- [1] Market Insider, “CO2 European Emission Allowancesle,” 2019. [Online]. Available: https://markets.businessinsider.com/commodities/co2-emissionsrechte.
- [2] M. Michalczuk, L. M. Grzesiak, and B. Ufnalski, “Hybridization of the lithium energy storage for an urban electric vehicle,” Bull. Pol. Ac.: Tech. 61(2), 325–333 (2013), doi: 10.2478/bpasts-2013‒0030.
- [3] H. Douglas, C. Roberts, S. Hillmansen, and F. Schmid, “An assessment of available measures to reduce traction energy use in railway networks,” Energy Convers. Manag. 106, 1149–1165 (2015), doi: 10.1016/j.enconman.2015.10.053.
- [4] P. Radcliffe, J.S. Wallace, and L.H. Shu, “Stationary applications of energy storage technologies for transit systems,” in 2010 IEEE Electrical Power & Energy Conference, 2010, pp. 1–7, doi: 10.1109/EPEC.2010.5697222.
- [5] W. Jefimowski, A. Szeląg, M. Steczek, and A. Nikitenko, “Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study,” Energy 195, 116943 (2020), doi: 10.1016/j.energy.2020.116943.
- [6] W. Mitkowski and P. Skruch, “Fractional-order models of the supercapacitors in the form of RC ladder networks,” Bull. Pol. Ac.: Tech. 61(3), 581–587 (2013), doi: 10.2478/bpasts-2013‒0059.
- [7] N. Devillers, S. Jemei, M.-C. Péra, D. Bienaimé, and F. Gustin, “Review of characterization methods for supercapacitor modelling,” J. Power Sources 246, 596–608 (2014), doi: 10.1016/j.jpowsour.2013.07.116.
- [8] D. Iannuzzi, F. Ciccarelli, and D. Lauria, “Stationary ultracapacitors storage device for improving energy saving and voltage profile of light transportation networks,” Transp. Res. Part C Emerg. Technol. 21(1), 321–337 (2012), doi: 10.1016/j.trc.2011.11.002.
- [9] S.J. Kashani and E. Farjah, “Applying Neural Network and Genetic Algorithm for Optimal Placement of Ultra- Capacitors in Metro Systems,” 2011 IEEE Electr. Power Energy Conf. 2011, pp. 35–40, doi: 10.1109/EPEC.2011.6070226.
- [10] W. Jefimowski, “Analiza wybranych aspektów efektywności energetycznej układu zasilania 3 kV DC zelektryfikowanej linii kolejowej,”, Warsaw University of Technology, PhD Thesis, 2018. [in Polish]
- [11] R. Barrero, X. Tackoen and J. Van Mierlo, “Improving energy efficiency in public transport: Stationary supercapacitor based Energy Storage Systems for a metro network,” 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, 2008, pp. 1‒8, doi: 10.1109/VPPC.2008.4677491.
- [12] W. Jefimowski, A. Szeląg, A. Nikitenko, and M. Wieczorek, “The optimization of supercapacitor module parameters of a stationary energy storage system in DC power supply,” in 5th Int. Conference on Road and Rail Infrastructure CETRA, 2018, 605–611.
- [13] P.V. Radu, A. Szelag, and M. Steczek, “On-Board Energy Storage Devices with Supercapacitors for Metro Trains — Case Study Analysis of Application Effectiveness,” Energies 12(7), 1291 (2019), doi: 10.3390/en12071291.
- [14] M. Ouattara and Y. Gordon, “WMATA Energy Storage Demonstration Project,” FTA Res. (Federal Transit Adm. no. 0086, 2015).
- [15] A.P. Marugán, F.P.G. Márquez, J.M.P. Perez, and D. Ruiz-Hernández, “A survey of artificial neural network in wind energy systems,” Appl. Energy 228, 1822–1836 (2018), doi: 10.1016/j.apenergy.2018.07.084.
- [16] W. He, “Load Forecasting via Deep Neural Networks,” Procedia Comput. Sci. 122, 308–314 (2017), doi: 10.1016/j.procs.2017.11.374.
- [17] A. Cichocki, T. Poggio, S. Osowski, and V. Lempitsky, “Deep Learning : Theory and Practice,” Bull. Pol. Ac.: Tech. 66(6), 757–759 (2018), doi: 10.24425/bpas.2018.125923.
- [18] C. Wang, R. Xiong, H. He, X. Ding, and W. Shen, “Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles,” Appl. Energy 183, 612–622 (2016), doi: 10.1016/j.apenergy.2016.08.178.
- [19] M. Lewandowski, M. Orzyłowski, and A. Buze, “Losses in supercapacitors at dynamic loads of energy storage systems of electric vehicles,” Prz. Elektrotechniczny 92(12), 289–295 (2016), doi: 10.15199/48.2016.12.71.
- [20] W. Jefimowski and A. Szeląg, “The multi-criteria optimization method for implementation of a regenerative inverter in a 3 kV DC traction system,” Electr. Power Syst. Res.161, 61–73 (2018), doi: 10.1016/j.epsr.2018.03.023.
- [21] D. Torregrossa and M. Paolone, “Modelling of current and temperature effects on supercapacitors ageing. Part I: Review of driving phenomenology,” J. Energy Storage 5, 85–94 (2016), doi: 10.1016/j.est.2015.11.003.
- [22] D. Torregrossa and M. Paolone, “Modelling of current and temperature effects on supercapacitors ageing. Part II: State-of-Health assessment,” J. Energy Storage 5, 95–101 (2016), doi: 10.1016/j.est.2015.11.007.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65c3a670-592d-4026-8621-fb0c2b1cee32