PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic safety management model for rail traffic control

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Dynamiczny model zarządzania bezpieczeństwem dla sterowania ruchem kolejowym
Języki publikacji
EN
Abstrakty
EN
In rail transport, increasing emphasis has been placed in recent years on improving safety levels. Therefore, more requirements and legal documents require risk analyses to be carried out at various stages of investment implementation. One of the leading legal documents that introduce the obligation to monitor risk is Directive (EU) 2016/798 of the European Parliament and of the Council of 11 May 2016 on railway safety and Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the common safety method for risk evaluation and assessment and re-pealing Regulation (EC) No 352/2009. Additionally, for traffic control systems, the requirements of CENELEC standards are mandatory. These documents present the subject of safety level and show its relation with the safety targets defined in the railway system, including the different ways of measuring them. Methods are also available to analyse the safety level of railway system components in detail, both at the level of individual components, subsystems, and the whole national railway system. However, after conducting an in-depth analysis of the literature, the authors of the article indicate that these methods are not consistent with each other. There is no method defined to present the direct relation of the safety level of the components of the system on the achievement of safety targets for the national railway system. The research and analysis aimed to define an approach, a method that would meet all legal requirements but at the same time would allow to clearly and reliably determine the safety level of the railway system. To define a unified approach, the authors of the article propose to develop a model of a dynamic object - a railway system safety model, which has also been verified on accurate safety data in rail transport in recent years. This model organises the process of safety management on railways and allows to determine values influencing the achievement of safety targets on an assumed level.
PL
Dyskusja o zagrożeniach i potrzebie metody ich oceny na różnych etapach inwestycji jest wciąż żywa na kolei. Istnieje również wiele dokumentów prawnych, które określają podejście do ryzyka oraz metody analizy i oceny ryzyka. Niemniej jednak dokumenty te często pokazują rozbieżne podejścia do zarządzania ryzykiem, co powoduje niejednoznaczność w interpretacji wymagań. Co więcej, niejednoznaczne wymagania skutkują różnymi interpretacjami przepisów i ich różnym stosowaniem przez uczestników rynku. Jednolite podejście i precyzyjne wymagania mają kluczowe znaczenie dla utrzymania wysokiego poziomu bezpieczeństwa, co jest ściśle związane z osiągnięciem zrównoważonego rozwoju transportu kolejowego. Dlatego w artykule autorzy podjęli się przedstawienia metody, która ujednoliciłaby rozbieżności w wymaganiach prawnych i objęła cały system kolejowy. W pierwszej części artykułu autorzy skupiają się na ujednoliceniu zarządzania bezpieczeństwem w sferze formalno-prawnej. Stosowana jest tu dogłębna analiza i porównanie istniejących standardów, wraz z mapowaniem poszczególnych procesów. Jest to kwestia krytyczna, ponieważ brak jednolitego podejścia stwarza problemy w ocenie globalnego bezpieczeństwa systemu. W dalszej części artykułu autorzy poruszyli problem rozłożonych w czasie analiz bezpieczeństwa. Obecne metody koncentrują się na statycznej ocenie bezpieczeństwa. W artykule zaproponowano nowatorskie podejście do dynamicznego zarządzania ryzykiem, wykorzystując teorię mechaniki i automatyki. Oczekuje się, że podejście to zaowocuje wytworzeniem predykcyjnych metod zarządzania ryzykiem.
Rocznik
Strony
53--63
Opis fizyczny
Bibliogr. 52 poz., rys. tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Transport, ul. Koszykowa 75, 00-662 Warsaw, Poland,
  • Railway Institute, ul. Chłopickiego 50, 04-275 Warsaw, Poland
  • Independent researcher, Warsaw, Poland
Bibliografia
  • [1] An M., Lin W., Huang S. (2013) An Intelligent Railway Safety Risk Assessment Support System for Railway Operation and Maintenance Analysis, The Open Transportation Journal, 7(1), 27-42. https://doi.org/10.2174/1874447801307010027.
  • [2] Berrado A., El-Miloudi E.-K., Cherkaoui A., Khaddour M. (2011) A Framework for Risk Management in Railway Sector: Application to Road-Rail Level Crossings, The Open Transportation Journal, 5(1), 34-44. https://doi.org/10.2174/1874447801105010034.
  • [3] Chruzik K. (2014) Wspólne metody bezpieczeństwa w transporcie kolejowym Europy - teoria i praktyka, TTS Technika Transportu Szynowego, 21(9).
  • [4] Commission Regulation (EU) 2016/919, Commission Regulation (EU) 2016/919 of 27 May 2016 on the Technical Specification for Interoperability Relating to the ‘Control-Command & Signalling’ Subsystems of the Rail System in the European Union.
  • [5] Directive (EU) 2016/798, Directive (EU) 2016/798 of the European Parliament and of the Council of 11 May 2016 on railway safety, (n.d.).
  • [6] Du, L. Xie, C. Du, (2002) H-infinity Control and Filtering of Two-Dimensional Systems, Springer Berlin / Heidelberg, Berlin, Heidelberg.
  • [7] European Union Agency For Railways, Report 2017 assessment of achievement of safety targets, Version 1.0. 2017.
  • [8] European Union Agency for Railways, Guidance for safety certification and supervision, Safety management system requirements for safety certification or safety authorization. 2018.
  • [9] European Union Agency for Railways, Note of Safety Targets for stakeholder discussion. 2019.
  • [10] Europejska Agencja Kolejowa, Przykłady oceny ryzyka i ewentualnych narzędzi pomocniczych do rozporządzenia w sprawie wspólnych metod oceny bezpieczeństwa (CSM), ERA/GUI/02-2008/SAF, wersja 1.1. 2009.
  • [11] Flavio Vismari L., Camargo Junior J.B. (2011) A safety assessment methodology applied to CNS/ATM-based air traffic control system, Reliability Engineering and System Safety, 96(7), 727–738. https://doi.org/10.1016/j.ress.2011.02.007.
  • [12] Helak M., Smoczyński P., Kadziński, A. (2019) Implementation of the common safety method Dynamic safety management model for rail traffic control in the European Union railway transportation, Scientific Journal of Silesian University of Technology. Series Transport, 102, 65–72. https://doi.org/10.20858/sjsutst.2019.102.5.
  • [13] Hessami A. G. (2015) A Systems View of Railway Safety and Security, Railway Research - Selected Topics on Development, Safety and Technology. https://doi.org/10.5772/62080.
  • [14] Hwang J.-G., Jo H.-J., Yoon Y.-G. (2008) Safety assessment methodology of railway signalling systems in Korea, Risk Analysis VI, WIT Press, Cephalonia, Greece, 503-511. https://doi.org/10.2495/RISK080491.
  • [15] Jabłoński A., Jabłoński M. (2018) Mechanizmy efektywnego zarządzania bezpieczeństwem w transporcie kolejowym, ISBN 978-83-7556-983-4, CeDeWu Sp. z o. o., Warszawa.
  • [16] Jamroz K., et al. (2010) Koncepcja zintegrowanego Systemu bezpieczeństwa transportu, Tom III, Koncepcja Zintegrowanego Systemu Bezpieczeń- stwa Transportu w Polsce, WKŁ, Warszawa.
  • [17] Jovicic D. (2014) Explanatory note on the CSM Assessment Body referred to in Regulation (EU) N°402/2013(1) and in OTIF UTP GEN-G of 1.1.2016(2) on the Common Safety Method (CSM) for risk assessment, 24.
  • [18] Kaczorek T. (1997) Teoria sterowania, PWN.
  • [19] Knorn S., Middleton R.H., (2016) Asymptotic and exponential stability of nonlinear two-dimensional continuous–discrete Roesser models, Systems & Control Letters , 93, 35–42. https://doi.org/10.1016/j.sysconle.2016.03.004.
  • [20] Kobaszyńska-T. A. (2017) Risk management at level crossings, Poznań University of Technology, Faculty of Machines and Transportation.
  • [21] Kritzinger D. (2017) 2- Safety assessment strategy (with Goal Structuring Notation), Aircraft System Safety (Assessments for Initial Airworthiness Certification), ISBN 978-0-08-100889-8, 23-35. https://doi.org/10.1016/B978-0-08-100889-8.00002-7.
  • [22] T. Lecomte, R. Pinger, and A. Romanovsky (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification: First International Conference, RSSRail 2016, Paris, France, Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-33951-1.
  • [23] Leitner,B. (2017) A General Model for Railway Systems Risk Assessment with the Use of Railway Accident Scenarios Analysis, Procedia Engineering, 187, 150–159. https://doi.org/10.1016/j.proeng.2017.04.361.
  • [24] Luber M., Arras K.O., Plagemann C., Burgard W. (2009) Classifying dynamic objects: An unsupervised learning approach, Autonomous Robots, 26(2), 141–151. https://doi.org/10.1007/s10514-009-9112-4.
  • [25] Mahboob Q., Zio E. (2018) Handbook of RAMS in Railway Systems: Theory and Practice, Edited by Qamar Mahboob, Enrico Zio Routledge, CRC Press, ISBN 9781138035126.
  • [26] Morant A. (2015) Dependability and safety evaluation of railway signalling systems based on field data, PhD in Operation and Maintenance Engineering. https://doi.org/10.13140/RG.2.1.2444.9365.
  • [27] Morant A., Gustafson A., Söderholm P., Larsson-Kråik P.-O., Kumar U. (2016) Safety and availability evaluation of railway operation based on the state of signalling systems, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(2), 226-238. https://doi.org/10.1177/0954409715624466
  • [28] Myklebust T., Stålhane T. (2018) The Agile Safety Case, ISBN 978-3-319-70264-3, ISBN 978-3-319-70265-0 (eBook), Springer Internat. Publishing. https://doi.org/10.1007/978-3-319-70265-0.
  • [29] Ouedraogo K.A., et al. (2018) Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems, Risk Analysis, 38(8), 1634-1655. https://doi.org/10.1111/risa.12972.
  • [30] Petit-Doche M., Obeo F.T., Belmonte F. (2012) Interoperability between Risk Assessment and System Design for Railway Safety Critical Signalling System Development, in Embedded Real Time Software and Systems (ERTS2012), Toulouse, France.
  • [31] Pieniak-Lendzion K., Stefaniak R. (2019) Selected issues in rail transport safety in Poland, Scientific Papers of Silesian University of Technology Organisation and Management Series, 134, 203-213, http://dx.doi.org/10.29119/1641-3466.2019.134.16.
  • [32] Read G.J.M., Naweed A., Salmon P.M. (2019) Complexity on the rails: A systems-based approach to understanding safety management in rail transport, Reliability Engineering & System Safety, 188, 352–365. https://doi.org/10.1016/j.ress.2019.03.038.
  • [33] Roesser R. (1975) A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control, 20(1), 1-10. https://doi.org/10.1109/TAC.1975.1100844.
  • [34] Rogers E., et al. (2015) Multidimensional control systems: case studies in design and evaluation, Multidim Syst Sign Process, 26(4), 895-939, https://doi.org/10.1007/s11045-015-0341-8.
  • [35] Schutte J., Casir C., Eckel A. (2005) Derivation of common safety targets for the European railways, WIT Transactions on The Built Environment, https://doi.org/10.2495/SAFE050241.
  • [36] Skogstad O., Experiences with Safety Case Documentation According to the CENELEC Railway Safety Norms, Towards System Safety, Springer. https://doi.org/10.1007/978-1-4471-0823-8_2.
  • [37] Smith P. (2016) Safety Case for the Introduction of New Technology into an Existing Railway System, Imperial College London, Department of Civil and Environmental Engineering, Centre for Transport Studies. Civil and Environmental Engineering PhD these. https://doi.org/10.25560/45313.
  • [38] Spriggs J. (2012) GSN - The Goal Structuring Notation: A Structured Approach to Presenting Arguments, Springer-Verlag London Limited. https://doi.org/10.1007/978-1-4471-2312-5.
  • [39] Szmel D., Zabłocki W., Ilczuk P., Kochan A. (2019) Method for Selecting the Safety Integrity Level for the Control-Command and Signaling Functions, Sustainability, 11(24):7062. https://doi.org/10.3390/su11247062.
  • [40] Szopa T. (2009) Niezawodność i bezpieczeństwo, Wydanie I., ISBN 9788372078186, OWPW, W-wa.
  • [41] Urząd Transportu Kolejowego, (2015) Ekspertyza dotycząca praktycznego stosowania przez podmioty sektora kolejowego wymagań wspólnej metody bezpieczeństwa w zakresie oceny ryzyka (CSM RA) opracowana w formie przewodnika.
  • [42] Urząd Transportu Kolejowego, (2019) Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego - 2019 r., Urząd Transportu Kolejowego, available at https://utk.gov.pl/pl/dokumenty-i-formularze/ opracowania-urzedu-tran/16257,Sprawozdanie -ze-stanu-bezpieczenstwa-ruchu-kolejowego-2019-r.html
  • [43] Wang R., Guiochet J., Motet G., Schön W. (2017) Modelling Confidence in Railway Safety Case, Safety Science, 110. https://doi.org/10.1016/j.ssci.2017.11.012.
  • [44] Wigger P. (2012) MODSafe-Modular Urban Transport Safety and Security Analysis, Procedia - Social and Behavioral Sciences, 48, 2616-2625. https://doi.org/10.1016/j.sbspro.2012.06.1232.
  • [45] Wu L., Wang Z. (2015) Filtering and Control for Classes of Two-Dimensional Systems, Series: Studies in Systems, Decision and Control, Vol. 18, ISBN 978-3-319-13697-4, Springer International Publishing. https://doi.org/10.1007/978-3-319-13698-1.
  • [46] The State Committee for Railway Accidents, Ministry of Infrastructure and Construction, Annual Reports for 2011–2020 on the Activities of the State Committee for Railway Accidents, (2020).
  • [47] Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the common safety method for risk evaluation and assessment and repealing Regulation (EC) No 352/2009, (n.d.).
  • [48] Commission Implementing Regulation (EU) 2015/1136 of 13 July 2015 amending Implementing Regulation (EU) No 402/2013 on the common safety method for risk evaluation and assessment, (n.d.).
  • [49] EN 50126-1:2017 - Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS Process, iTeh Standards Store, available at https://standards.iteh.ai/catalog/ standards/clc/e5456892-eb2c-437e-8c4b-91c08 007f0b4/en-50126-1-2017.
  • [50] EN 50129:2003 - Railway applications - Commu- nication, signalling and processing systems - Safety, available at https://standards.iteh.ai/catalog/ standards/clc/42c2dcf7-c764-45af-b4a7-a015ec fff75d/en-50129-2003.
  • [51] BG PW - Modeling of Dynamic Object Systems, available at https://primo-48tuw.hosted.exlibris group.com/primo-explore/fulldisplay?docid=48 TUW_ejournals2560000000282894&context=L&vid=48TUW_VIEW&lang=pl_PL&search_scope=primo_all_scope&adaptor=Local%20Search%20Engine&tab=default_tab&query=any,contains,dynamic%20objects&offset=0.
  • [52] Bezpieczny przejazd - kampania społeczna Szlaban na ryzyko!, available at https://www.bezpieczny -przejazd.pl/o-kampanii/statystyki.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65c3790a-540e-470f-bbfe-b14358f4bdaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.