PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of Calcium Oxide from Green Mussel Shell with Iron Oxide as a Potential Adsorbent for the Removal of Iron and Manganese Ions from Acid Mine Drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acid mine drainage (AMD) has the characteristics of high heavy metal ion content and low pH. This study aimed to synthesize the CaO/Fe3O4 composite for the adsorption of iron and manganese ions from acid mine drainage. CaO was synthesized from the shells of green mussels (Perna viridis). The CaO/ Fe3O4 composites were characterized using XRD, BET surface area, SEM-EDS, and VSM. The functional groups of the composite before and after adsorption were analyzed using FTIR. The adsorption of Fe(II), Fe(III), and Mn(II) ions was carried out with the batch method to determine the effect of pH, contact time, and initial concentration of metal ions. The CaO/ Fe3O4 composite has magnetic properties, as indicated by the saturation magnetization value of 65.49 emu/g. The Langmuir and Freundlich isotherm models were used to describe the adsorption isotherm of the composite for Fe(II), Fe(III), and Mn(II) ions. Investigations were also conducted on adsorption kinetics, including pseudo-first-order and pseudo-second-order, as well as adsorption thermodynamics comprising free energy, enthalpy, and entropy. Pseudo-first-order and Langmuir isotherms are suitable to describe the adsorption of Fe(II), Fe(III), and Mn(II) ions with adsorption capacities of Fe(III) > Fe(II) > Mn(II). Moreover, the adsorption of all ions using the composite occurred spontaneously. The removal effectiveness for Fe and Mn ions from AMD using CaO/ Fe3O4 composite, reached 90.41 and 97.59%, respectively, in volume 100 mL AMD, composite mass 0.4 g, and a contact time of 60 minutes.
Rocznik
Strony
188--201
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Doctoral Program of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Padang Selasa No 524 Bukit Besar, Palembang 30139, South Sumatra, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir, Indonesia
  • Doctoral Program of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Padang Selasa No 524 Bukit Besar, Palembang 30139, South Sumatra, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jalan Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir, Indonesia
Bibliografia
  • 1. Ahmaruzzaman M. 2011. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1-2), 36–59.
  • 2. Aprianti T., Afrah B.D., Agustina T.E. 2017. Acid Mine Drainage Treatment Using Activated Carbon Ceramic Adsorbent in Adsorption Column. International Journal on Advanced Science Engineering Information Technology, 7(4), 1241–1247.
  • 3. Bakalar T., Kanuchova M., Girova A., Pavolova H., Hromada R., Hajduova Z. 2020. Characterization of Fe(III) adsorption onto zeolite and bentonite. International Journal of Environmental Research and Public Health, 17(16), 1–13.
  • 4. Biedrzycka A., Skwarek E., Hanna U.M. 2021. Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications. Advances in Colloid and Interface Science, 291, 1–21.
  • 5. Candeias C., Avila P.F., Silva E.F., Ferreira A., Salgueiro A.R., Teixeira J.P. 2014. Acic mine drainage from the Panasqueira mine and its influence on zezere river (Central Portugal). Journal of African Earth Sciences, 99(2), 705–712.
  • 6. Carrilo-Gonzalez R., Garcia B.G.G., Gonzalez-Chavez M.D.C., Dominguez, F.A.S. 2022. Trace elements adsorption from solutions and acid mine drainage using agricultural by-products. Soil and Sediment Contamination: An International Journal, 31(3), 348–366.
  • 7. Cazetta A.L., Pezoti O., Bedin K.C., Silva T.L. 2016. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chemistry & Engineering, 4(3), 1058–1068.
  • 8. Chakraborty S., Mukherjee A., Das S., Maddela, N. R., Iram, S., Das, P. 2021. Study on isotherm, kinetics, thermodynamics of adsorption of crystal violet dye by calcium oxide modified fly ash. Environmental Engineering Research, 26(1), 1–9.
  • 9. Chartrand M.M.G., Bunce N.J. 2003. Electrochemical remediation of acid mine drainage. Journal of Applied Electrochemistry, 33, 259–264.
  • 10. Choi B.J., Lee S.M., Lee S.H. 2000. Coagulation treatment of landfill leachate using acid mine drainage (AMD). Journal of Environmental Health Sciences, 26(4), 129–133.
  • 11. Choi J., Kwon D., Yang J., Lee J.Y., Park Y. 2007. Comparison of Fe and Mn removal using treatment agents for acid mine drainage. Environmental Technology, 30(5), 445–454.
  • 12. Dai J., Ren F., Tao C.Y. 2012. Adsorption behavior of Fe(II) and Fe(III) ion on thiourea cross-linked chitosan with Fe(III) as template. Molecule, 17, 4388–4399.
  • 13. Duan Z., Zhang W., Lu M., Shao Z., Huang W., Li J., Li Y., Mo J., Li Y., Chen C. 2020. Magnetic Fe3O4/activated carbon for combined adsorption and Fenton oxidation of 4-chlorophenol. Carbon, 167, 351–367.
  • 14. Dutta D., Borah J.P., Puzari, A. 2021. Adsorption of Mn2+ from aqueous solution using manganese oxide-coated hollow polymethylmethacrylate. Adsorption Science & Technology, 2021, 1–10.
  • 15. El-Sherif I.Y., Fathy N.A., Hanna, A.A. 2013. Removal of Mn(II) and Fe(II) ions from aqueous solution using precipitation and adsorption methods. Journal of Applied Science Research, 9(1), 233–239.
  • 16. Emmanuel K.A., Rao A.V. 2009. Comparative study adsorption of Mn(II) from aqueous solutions on various activated carbon. Journal of Chemistry, 6(3), 693–704.
  • 17. Foroutan R., Peighambardoust S.J., Mohammadi R., Omidvar M., Sorial G.A., Ramavandi B. 2020. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. International Journal of Biological Macromolecules, 151, 355–365.
  • 18. Fororoutan R., Peighambardoust S.J., Ahmadi A., Akbari A., Farjadfard S., Ramavandi B. 2021. Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. Journal of Environmental Chemical Engineering, 9(4), 1–11.
  • 19. Freundlich H. 1906. Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–470.
  • 20. Granados-Pichardo A., Granados-Correa F., Sanchez-Mendieta V., Hernadez-Mendoza H. 2020. New CaO-based adsorbents prepared by solution combustion and high-energy ball-milling processes for CO2 adsorption: textural and structural influences. Arabian Journal of Chemistry, 13(1), 171–183.
  • 21. Hossain M., Muntaha N., Goni L.K.M.O., Jamal M.S., Gafur M.A., Islam D., Fakhuruddin A.N.M. 2021. Triglyceride conversion of waste frying oil up to 98.46% using low concentration K+/CaO catalysts derived from eggshells. ACS Omega, 6(51), 35679–35691.
  • 22. Jiang T., Liang Y., He Y, Wang Q. 2015. Activated carbon/NiFe2O4 magnetic composite: a magnetic adsorbent for the adsorption of methyl orange. Journal of Environmental Chemical Engineering, 3(3), 1740–1751.
  • 23. Jitjamnong J., Luengnaruemitchai A., Samanwonga N., Chuaykarn N. 2019. Biodiesel production from canola oil and methanol using Ba impregnated calcium oxide with microwave irradiation assistance. Chiang Mai Journal of Science, 46(5), 987–1000.
  • 24. Johnson D.B., Hallberg K.B. 2005. Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1-2), 3–14.
  • 25. Kasirajan R., Bekele A., Girma E. 2022. Adsorption of lead (Pb-II) using CaO-NPs synthesized by sol gel process from hen eggshell: response surface methodology for modeling, optimization and kinetics study. South African Journal of Chemical Engineering, 40, 209–229.
  • 26. Kefeni, K.K., Msagati, T.A.M, Mamba B.B. 2017. Acid mine drainage: prevention, treatment options, and resource recovery: a review. Journal of Cleaner Production, 151, 475–493.
  • 27. Keshavarz M., Foroutan R., Papari F., Bulgariu L., Esmaeili H. 2021. Synthesis of CaO/Fe2O3 nano- composite as an efficient nano adsorbent for the treatment of wastewater containing Cr (III). Separation Science and Technology, 56(8), 1328–1341.
  • 28. Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • 29. Li X., Guo Y., Cai J., Bao W. 2022. Experiment study on the treatment of acid mine drainage containing heavy metals with domestic waste pyrolysis ash. Water Science & Technology, 85(1), 3225–3238.
  • 30. Liu L., Liu J., Zhao L., Yang Z., Lv C., Xue J., Tang A. 2019. Synthesis and characterization of magnetic Fe3O4@CaSiO3 composites and evaluation of their adsorption characteristics for heavy metal ions. Environmental Science and Pollution Research, 26, 8721–8736.
  • 31. Lugo-lugo V., Barrera-Diaz C., Urena-Nunex F., Bilyeu B., Linares-Hernandez I. 2012. Biosorption of Cr(III) and Fe(III) in single and binary system onto the pretreated orange peel. Journal of Environmental Management, 112, 120–127.
  • 32. Mansoor S.J., Abbasitabar F. 2020. Adsorption Behavior of Fe(II) and Fe(III) ions on polyaniline coated sawdust: batch and fixed–bed studies. Acta Chimica Slovenica, 67, 36–46.
  • 33. Mar W.W., Somsook E. 2012. Mathanolysis of soybean oil over KCl/CaO solid base catalyst for biodiesel production. Science Asia, 38, 90–94.
  • 34. Markovic R., Bessho M., Masuda N., Stevanovic Z., Bozic D., Trujic T.A., Gardic V. 2020. New Approach of Metals Removal from Acid Mine Drainage. Applied Science, 10, 1–16.
  • 35. Marxen J.C., Becker W., Finke, D, Hasse B., Epple M. 2003. Early mineralization in Biomphalaria glabrata: Microscopic and structural results. Journal of Molluscan Studies, 69, 113–121.
  • 36. Mohan D., Chander S. 2006. Removal and recovery of metal ions from acid mine drainage using lignite-a low cost sorbent. Journal of Hazardous Materials, B137, 1545–1553.
  • 37. Moghadam M.R., Nasirizadeh N., Dashti Z., Babanezhad E. 2013. Removal of Fe(II) from aqueous solution using pomegranate peel carbon: equilibrium and kinetic studies. International Journal of Industrial Chemistry, 4(19), 1–6.
  • 38. Motsi T., Rowson N.A., Simmons M.J.H. 2011. Kinetic studies of the removal of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 101(1–4), 42–49.
  • 39. Nguyen T.T., Ma H.T., Avti P., Bashir M.J.K., Ng C.A., Wong L.Y., Jun H.K., Ngo Q.M., Tran N.Q. 2019. Adsorptive removal of iron using SiO2 nanoparticles extracted from rice husk ash. Journal of Analytical Methods in Chemistry, 2019, 1–8.
  • 40. Nordstrom D.K., Blowes D.W., Ptacek C.J. 2015. Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16.
  • 41. Nunez-gomez D., Rodrigues C., Lapolli F.R., Lobo-Recio M.A. 2019. Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: isotherm and continuous-flow study. Journal of Environmental Chemical Engineering, 7(1), 1–10.
  • 42. Orescanin V., Kollar R., 2012. A combined CaO/electrochemical treatment of the acid mine drainage from the “Robule” lake. Journal of Environmental Science and Health Part A, 47, 1186–1191.
  • 43. Pereira T.C.B., Santos K.B.D., Lautert-Dutra W., Teodoro L.S.T., Almeida V.O, Weiler J., Schneider I.A.H., Bogo M.R. 2020. Acid mine drainage (AMD) treatment by neutralization: evaluation of physical-chemical performance and ecotoxicological effects on zebrafish (danio rerio) development. Chemosphere, 253, 1–9.
  • 44. Raiman M.L., Briceno G., Schalchli H., Bornhardt C., Diez M.C. 2021. Alternative treatment for metal ions removal from acid mine drainage using an organic biomixture as a low cost adsorbent. Environmental Technology & Innovation, 24, 1–11.
  • 45. Reddy I.N., Sreedhar A., Reddy Ch.V., Shim J., Cho M., Kim D., Gwag J.S., Yoo K. 2018. Enhanced visible-light photocatalytic performance of Fe3O4 nanopyramids for water splitting and dye degradation. Journal of Solid State Electrochemistry, 22, 3535–3546.
  • 46. Reiad N.A., Salam O.E.A., Abadir E.F., Harraz F.A. 2012. Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane. Journal of Environmental Sciences, 24(8), 1425–1432.
  • 47. Rodriguez C., Leiva E. 2020. Enhanced Heavy Metal Removal from Acid Mine Drainage Wastewater Using Double-Oxidized Multiwalled Carbon Nanotubes. Molecules, 25(1), 1–22.
  • 48. Shi N., Xi B., Tiang F., Ma X., Li H., Feng J., Xiong, S. 2020. Boosting Na+ storage ability of bimetallic MoxW1−xSe2 with expanded interlayers. Chemistry of European Journal, 26(43), 9580–9588.
  • 49. Sicupira D.C., Silva T.T., Ladeira A.C.Q., Mansur, M.B. 2015. Adsorption of manganese from acid mine drainage effluents using bone char: continuous fixed bed column and batch desorption studies. Brazilian Journal of Chemical Engineering, 32(2), 577–584.
  • 50. Sisca V., Deska A., Syukri, Zilfa, Jamarun N. 2021. Synthesis and characterization of CaO limestone from Linatau Buo supported by TiO2 as a heterogeneous catalyst in the production of biodiesel. Indonesian Journal of Chemistry, 21(4), 979–989.
  • 51. Sheilbani A., Shishehbor M.R., Alaei H. 2012. Removal of Fe(III) ions from aqueous solution by hazelnut hull as an adsorbent. International Journal of Industrial Chemistry, 3(4), 1–4.
  • 52. Stella C., Soundararajan N., Ramachandran K. 2014. Structural, optical, dielectric, and magnetic properties of Mn1-xCoxO2 nanowires. Superlattices and Microstructures, 71, 203–210.
  • 53. Subbaiah M.V., Kim, D.S. 2016. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: kinetics, isotherms, and thermodynamic studies. Ecotoxicology and Environmental Safety, 128, 109–117.
  • 54. Thakur S., Singh S., Pal B. 2021. Superior adsorption removal of dye and high catalytic activity for transesterification reaction displayed by crystalline CaO nanocubes extracted from mollusk shell. Fuel Processing Technology, 213, 1–9.
  • 55. Tong L., Fan R., Yang S., Zhang Q., Pan, Y. 2022. A technology review on treatment of acid mine drainage with bentonite-steel slag composite. SN Applied Sciences, 4(10), 1–11.
  • 56. Trumm D. 2010. Selection of active and passive treatment system for AMD-flow charts for new Zealand conditions. New Zealand Journal of Geology and Geophysics, 53(2-3), 195–210.
  • 57. Westholm L.J. Repo E., Silanpaa M. 2014. Filter materials for metal removal from mine drainage-a review. Environmental Science and Pollution Research, 21, 9109–9128.
  • 58. White M.M., Chejlava M., Fried B., Sherma J. 2007. The concentration of calcium carbonate in shells of freshwater snails. American Malacological Bulletin, 22, 139–142.
  • 59. Wu K., Huang W., Hung W., Tsai C. 2021. Modified expanded graphite/Fe3O4 composite as an adsorbent of methylene blue: adsorption kinetics and isotherm. Material Science & Engineering, B, 266, 1–8
  • 60. Yew Y.P., Shameli K., Miyake M., Khairudin N.B.A. Mohamad S.E., Naiki T., Lee K.X. 2020. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arabian Journal of Chemistry, 13(1), 2287–2308.
  • 61. Zhang Y., Zhao J., Jiang Z, Shan D, Lu Y. 2014. Biosorption of Fe(II) and Mn(II) ions from aqueous solution by rice husk ash. Biomed Research International, 2014, 1–11.
  • 62. Zhong C.M., Xu Z.L., Fang X.H., Cheng L. 2007. Treatment of acid mine drainage (AMD) by ultra-low-pressure reverse osmosis and nanofiltration. Environmental Engineering Science, 24(9), 1297–1306.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65b95068-64c2-421b-a3f3-1b4e1d40bb7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.