PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Water demineralization by membrane distillation utilizing cooling water from municipal waste incinerator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The membrane distillation performance was studied for production of demineralized water from surface water (river). Hot water from cooling water system of municipal waste incinerator was considered as an energy source for membrane distillation. The integration of membrane installation with such cooling water system allows to re-use up to 18 kW per 1 m2  of the membranes. The studies were performed with the application of polypropylene capillary membranes Accurel PP S6/2. The membrane modules were supplied with the feed heated to a temperature of 310 K and 330 K. The permeate flux obtained for these temperatures was 2.8 and 9.7 L/m2  h, and the distillate conductivity was 6 and 4 S/cm, respectively. The water demineralisation process was carried out for 1200 h without module cleaning. The behaviour of the permeate flux and distillate conductivity indicate that used membranes maintained their non-wettability over tested period. The performed SEM-EDS examinations confirmed, that the deposits did not fill the pores and were mainly formed on the membrane surface. The scaling intensity was definitely smaller for lower temperature (310 K) of the feed. The amorphous deposits containing beside Ca also substantial amounts of the Si were mainly formed under these conditions, whereas at higher feed temperature dominated CaCO3  scaling.
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. Jones, H., Handley, C., Pye, S. & Howlett, L. (2001). Review of BAT for New Waste Incineration, R&D Technical Report P4-100, part 3, November 2001, Environment Agency, Bristol.
  • 2. Atănăsoae, P., Pentiuc, R. & Hopulele, E. (2016). Energy recovery of municipal solid waste for combined heat and power Production, in Proc. of International Conference and Exposition on Electrical and Power Engineering (EPE 2016), 842–845, 20–22 October 2016, Iasi, Romania.
  • 3. Gewald, D., Siokos, K., Karellas, S. & Spliethoff, H. (2012). Waste heat recovery from a landfill gas-fired power plant, Renew. Sustain. Energy Rev. 16(4), 1779–1789. DOI: 10.1016/j.rser.2012.01.036.
  • 4. Katsoyiannis, I.A., Gkotsis, P., Castellana, M. Cartechini, F. & Zouboulis, A.I. (2017). Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent, J. Environ. Manage. 190, 132–139. DOI: 10.1016/j.jenvman.2016.12.040.
  • 5. Khalifa, A., Ahmad, H., Antar, M., Laoui, T. & Khayet, M. (2017). Experimental and theoretical investigations on water desalination using direct contact membrane distillation, Desalination, 404, 22–34. DOI: 10.1016/j.desal.2016.10.009.
  • 6. Wang, P. & Chung, T.S. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring, J. Membr. Sci. 474, 39–56. DOI: 10.1016/j.memsci.2014.09.016.
  • 7. Winter, D., Koschikowski, J., Gross, V., Maucher, D., Düver, D., Jositz, M., Mann, T. & Hagedorn, A. (2017). Comparative analysis of full-scale membrane distillation contactors - methods and modules, J. Membr. Sci. 524, 758–771. DOI: 10.1016/j.memsci.2016.11.080.
  • 8. Duong, H.C., Cooper, P., Nelemans, B., Cath, T.Y. & Nghiem, L.D. (2015). Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination, Desalination, 374, 1–9. DOI: 10.1016/j.desal.2015.07.009.
  • 9. Jantaporn, W., Ali, A. & Aimar, P. (2017). Specific energy requirement of direct contact membrane distillation, Chem. Eng. Res. Des. 128, 15–26. DOI: 10.1016/j.cherd.2017.09.031.
  • 10. Lokare, O.R., Tavakkoli, S., Khanna, V. & Vidic, R.D. (2018). Importance of feed recirculation for the overall energy consumption in membrane distillation systems, Desalination, 428, 250–254. DOI: 10.1016/j.desal.2017.11.037.
  • 11. Cheng, L., Zhao, Y., Li, P., Li, W. & Wang, F. (2018). Comparative study of air gap and permeate gap membrane distillation using internal heat recovery hollow fiber membrane module, Desalination, 426, 42–49. DOI: 10.1016/j.desal.2017.10.039.
  • 12. González, D., Amigo, J. & Suárez, F. (2017). Membrane distillation: Perspectives for sustainable and improved desalination, Renew. Sustain. Energy Rev. 80, 238–259. DOI: 10.1016/j.rser.2017.05.078.
  • 13. Kullab, A. & Martin, A. (2011). Membrane distillation and applications for water purification in thermal cogeneration plants, Sep. Purif. Technol. 76, 231–237. DOI: 10.1016/j.seppur.2010.09.028.
  • 14. Bush, J.A., Vanneste, J. & Cath, T.Y. (2016). Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: Effects of scaling and fouling on performance, efficiency, and salt rejection, Sep. Purif. Technol. 170, 78–91. DOI: 10.1016/j.seppur.2016.06.028.
  • 15. Banat, F. & Jwaie, N. (2010). Autonomous Membrane Distillation Pilot Plant Unit Driven by Solar Energy: Experiences and Lessons Learned, Int. J. Sustain. Water & Env. Sys. 1, 21–24. DOI: 10.5383/swes.0101.005.
  • 16. Warsinger, D.M. Swaminathan, J., Guillen-Burrieza, E., Arafat, H.A. & Lienhard V., J.H. (2015). Scaling and fouling in membrane distillation for desalination applications: A review. Desalination, 356, 294–313. DOI: 10.1016/j.desal.2014.06.031.
  • 17. Gryta,M. (2016). Degradation of polypropylene membranes applied in membrane distillation crystallizer, Crystals, 6(4) 33-47. DOI: 10.3390/cryst6040033.
  • 18. Naidu, G., Jeong, S. & Vigneswaran, S. (2014). Influence of feed/permeate velocity on scaling development in a direct contact membrane distillation, Sep. Purif. Technol. 125, 291–300. DOI: 10.1016/j.seppur.2014.01.049.
  • 19. Edwie, F. & Chung, T.S. (2013). Development of simultaneous membrane distillation –crystallization (SMDC) technology for treatment of saturated brine, Chem, Eng. Sci. 98 160–172. DOI: 10.1016/j.ces.2013.05.008.
  • 20. Dow, N., Gray, S., Li, J., Zhang, J., Ostarcevic, E., Liubinas, A., Atherton, P., Roeszler, G., Gibbs, A. & Duke, M. (2016). Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment, Desalination, 391, 30–42. DOI: 10.1016/j.desal.2016.01.023.
  • 21. Duong, H.C., Gray, S. Duke, M., Cath, T.Y. & Nghiem, L.D. (2015). Scaling control during membrane distillation of coal seam gas reverse osmosis brine, J. Membr. Sci., 493, 673–682. DOI: 10.1016/j.memsci.2015.07.038.
  • 22. Bouchrit, R., Boubakri, A., Hafi ane, A. & Bouguecha, S.Al-T. (2015). Direct contact membrane distillation: Capability to treat hyper-saline solution, Desalination, 376, 117–129. DOI: 10.1016/j.desal.2015.08.014.
  • 23. Nghiem, L.D. & Cath, T. (2011). A scaling mitigation approach during direct contact membrane distillation, Sep. Purif. Technol., 80, 315–322. DOI: 10.1016/j.seppur.2011.05.013.
  • 24. Yu, X., Yang, H., Lei, H. & Shapiro, A. (2013). Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation, Desalination, 323, 134–141. DOI: 10.1016/j.desal.2013.01.029.
  • 25. Zakrzewska–Kołtuniewicz, G. (2017). Water management in nuclear power plant using advanced low temperature systems, Eur. Wat. 58, 345–350. DOI: 10.1016/j.desal.2013.02.022.
  • 26. Gryta, M. (2017). Investigations of a membrane distillation pilot plant with a capillary module, Desalination Water Treat. 64, 279–286. DOI: 10.5004/dwt.2017.11465.
  • 27. Braul, L., Viraraghavan, T. & Corkal, D. (2001). Cold water effects on enhanced coagulation of high DOC, low turbidity water, Water Qual. Res. J. Canada, 36 701–717.
  • 28. Gryta, M. (2005). Long-term performance of membrane distillation process, J. Membr. Sci. 265, 153–159. DOI: 10.1016/j.memsci.2005.04.049.
  • 29. Gryta, M., Grzechulska-Damszel, J., Markowska, A. & Karakulski, K. (2009). The influence of polypropylene degradation on the membrane wettability during membrane distillation, J. Membr. Sci., 326, 493–502. DOI: 10.1016/j.memsci.2008.10.022.
  • 30. Gryta, M. (2009). Scaling diminution by heterogeneous crystallization in a filtration element integrated with membrane distillation module, Pol. J. Chem. Tech. 11, 60–65. DOI: 10.2478/v10026-009-0026-x.
  • 31. Gryta, M. (2012). Wettability of polypropylene capillary membranes during the membrane distillation process, Chem. Pap. 66, 92–98.DOI: 10.2478/s11696-011-0096-0.
  • 32. Nghiem, L.D., Hildinger, F., Hai, F.I. & Cath, T. (2011). Treatment of saline aqueous solutions using direct contact membrane distillation, Desalination Water Treat. 32, 234–241. DOI: 10.5004/dwt.2011.2705.
  • 33. Loste, E., Seshadri, R.M.W.R. & Meldrum, F.C. (2003). The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies, J. Cryst. Growth, 254, 206–218. DOI: 10.1016/S0022-0248(03)01153-9.
  • 34. Francis, L., Ghaffour, N., Alsaadi, A.S., Nunes, S.P. & Amy, G.L. (2014). Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions, J. Membr. Sci. 455, 103–112. DOI: 10.1016/j.memsci.2013.12.033.
  • 35. Nguyen, Q.M. & Lee, S. (2015). Fouling analysis and control in a DCMD process for SWRO brine, Desalination, 367, 21–27. DOI: 10.1016/j.desal.2015.03.039.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65b81191-194c-4e10-bec4-dcbcd4e70995
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.