Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The first suite of epidosite from the Central Sudetic Ophiolites has been discovered in the sheeted dyke complex of the Mount Ślęża ophiolite (SW Poland). Epidosites from the Mount Ślęża ophiolite represent A-type epidosites which metasomatically replaced diabasic sheeted dykes of the Strzegomiany–Kunów Fe-Ti mineralisation zone. They form decimetre-scale elongated pistachio-green patches or veins within single dykes. Their composition (quartz + epidote + titanite) is analogue to Troodos ophiolite end-member epidosite of Cyprus. The pistacite content of epidote range from Ps16 to Ps31 and is similar to those from other ophiolitic epidosites. Titanite is low in Al2O3 (0.61 to 1.10 wt.%) and Fe2O3 (0.43 to 0.63 wt.%) and high in V2O5 (from 0.22 to 0.47 wt.%). The presence of epidosites in the Mount Ślęża ophiolite can be considered as an evidence of its supra-subduction zone (SSZ) affinity. Finally, a direct link between the epidosite formation and the release of base metals from its protolith (Cu, Zn and Co) indicates the possibility of the Cyprus-type volcanogenic massive sulphide deposit (VMS) formation in the Mount Ślęża ophiolite.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
99--105
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- University of Warsaw, Institute of Geochemistry, Mineralogy and Petrology, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
- 1. Alt, J.C., 1995. Subseafloor processes in mid-ocean ridge hydrothermal system. Geophysical Monograph, 91: 85-114.
- 2. Alt, J.C., Teagle, D.A.H., Brewer, T., Shanks, W.C. III., Halliday, A., 1998. Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy. Journal of Geophys i cal Research, 103: 12365-12380.
- 3. Banerjee, N.R., Gills, K.M., 2001. Hydrothermal alteration in a modern suprasubduction zone: the Tonga Forearc crust. Journal of Geophysical Research, 106: 21737-21750.
- 4. Banerjee, N.R., Gills, K.M., Muehlenbachs, K., 2000. Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology, 28: 151-154.
- 5. Bischoff, J.L., Rosenbauer, R.J., 1985. An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). American Journal of Science, 285: 725-763.
- 6. Delura, K., 2012. Chromites from the Sudetic ophiolite: origin and alteration. AM Monograph, 4: 1-91.
- 7. Dubińska, E., Gunia, P., 1997. The Sudetic ophiolite current view on its geodynamic model. Geological Quarterly, 41 (1): 1-20.
- 8. Dubińska, E., Bylina, P., Kozłowski, A., Dorr, W., Nejbert, K., Shastok, J., Kulicki, C., 2004. U-Pb dating of serpentinization: hydrothermal zircon from metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chemical Geology, 203: 183-203.
- 9. Floyd, P.A., Kryza, R., Crowley, G., Winchester, J.A., Abdel Wahed, M., 2002. Ślęża ophiolite: geochemical features and relationship to Lower Palaeozoic rift magmatism in the Bohemian Massif. Geological Society Special Publications, 201:197-215.
- 10. Fornari, D.J., Embley, R.W., 1995. Tectonic and volcanic controls on hydrothermal processes at the mid-ocean ridge: an overview based on near-bottom and submersible studies. Geophysical Monograph, 91: 85-114.
- 11. Gaździk, J., 1957. Szczegółowa Mapa Geologiczna Sudetów 1:25000, arkusz Sobótka (in Polish). Wyd. Geol., Warszawa.
- 12. Haggerty, S.E., 1976. Opaque mineral oxides in terrestrial igneous rocks. Mineralogical Society of America Short Course Notes, 3: 101-300.
- 13. Harper, G.D., 1995. Pumpellyosite and prehnitite associated with epidosite in the Josephine ophiolite - Ca metasomatism during upwelling of hydrothermal fluids at a spreading axis. GSA Special Paper, 296: 101-122.
- 14. Heft, K.L., Gills, K.M., Pollock, M.A., Karson, J.A., Klein, E.M., 2008. Role of upwelling hydrothermal fluids in the development of alteration patterns at fast spreading ridges: evidence from the sheeted dike complex at Pito Deep. Geochemistry, Geophysics, Geosystems, 9: 1-21.
- 15. Jędrysek, M.O., Weber-Weller, A., Szynkiewicz, A., Mierzejewski, M., 2000. Evolution of Ślęża and Nowa Ruda ophiolites: oceanic and continental stages recorded in stable isotope composition of oxides, carbonates and sulphides. Geolines, 10: 37-39.
- 16. Jowitt, S.M., Jenkim, G.R.T., Coogan, L.A., Naden, J., Chenery, S.R.N., 2007. Epidosites of the Troodos ophiolite: a direct link between alteration of dykes and release of base metals into ore-forming hydrothermal system. Society for Geology Applied to Mineral Deposits (SGA) 9th Biennal Meeting, Dublin, Ireland, conference abstract.
- 17. Jowitt, S.M., Jenkin, G.R.T., Coogan, L.A., Naden, J., 2012. Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: effect of protolith composition and alteration mineralogy. Journal of Geochemical Exploration, 118: 47-59.
- 18. Kryza, R., 2011. Early Carboniferous (~337 Ma) granite intrusion in Devonian (~400 Ma) ophiolite of the Cenfral-Eutopean Variscides. Geological Quarterly, 55 (3): 213-222.
- 19. Kryza, R., Pin, C., 2010. The Central-Sudetic ophiolites (SW Poland): petrogenetic issues, geochronology and palaeotectonics implications. Gondwana Research, 17: 292-305.
- 20. Majerowicz, A., 1979. Grupa górska Ślęży a współczesne problemy geologiczne ofiolitów (in Polish). Materiały konferencji terenowej Nowa Ruda, 8-9.09.79: 1-2. Uniwersytet Wrocławski.
- 21. Majerowicz, A., Pin, C., 1994. The main petrological problems of the Mt. Ślęża ophiolite complex, Sudetes, Poland. Zentralblatt fur Geologie und Paläontologie, (1): 989-1018.
- 22. Majerowicz, A., Kryza, R., Wróblewska, G., 2000. Diallagite pegmatitoids from Mt. Ślęża gabbro. In: Tectonics of the Ślęża Mt Ophiolite and its Influence on the Distribution of Some Mineral Ores and Groundwater (ed. M. Mierzejewski): 49-54. Instytut Nauk Geologicznych, Uniwersytet Wrocławski, Wrocław.
- 23. Mikulski, S., 2004. Ophiolitic complex of the Troodos Massif (Cyprus) and asociated ore mineralisations (in Polish with English summary). Przegląd Geologiczny, 52: 135-137.
- 24. Mikulski, S., 2012. The occurrence and prospective resources of nickel ores in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 448: 287-296.
- 25. Nehlig, P., Juteau, T., Bendel, V., Cotten, J., 1994. The root zones of oceanic hydrothermal systems: constraints from the Samail ophiolite (Oman). Journal of Geophysical Research, 99: 4703-4713.
- 26. Olivier, G.J.H., Corfu, F., Krough, T.E., 1993. U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, 150: 355-369.
- 27. Olszyński, W., Mikulski, S., Speczik, S., 2001. Deposits and ore mineralisation associated with ophiolite complexes in the Sudetes Mts. (Poland). In: Mineral Deposits at the Beginning of the 21st Century (eds. A. Piestrzyński et al.): 615-618. A.A. Balkema, Lisse, The Netherlands.
- 28. Philips-Lander, C.M., Dilek, Y., 2009. Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania. Lithos, 108: 192-206.
- 29. Pirajno, F., 2009. Hydrothermal processes and mineral systems. Springer Science + Business Media B.V., Berlin, Heidelberg.
- 30. Sedwick, P.N., McMurtry, G.M., MacDugall, J.D., 1992. Chemistry of hydrothermal solutions from Pele Vents, Loihi seamount, Hawaii. Geochimica et Cosmochimica Acta, 56: 3643-3667.
- 31. Seyfried, W.E., Berndt, M.E., Seewald, J.S., 1988. Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. Canadian Mineralogist, 26: 787-804.
- 32. Tivey, M.K., 2007. Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20: 50-65.
- 33. Turniak, K., Mazur, S., Domańska-Siuda, J., Szuszkiewicz, A., 2014. SHRIMP U-Pb zircon dating for granitoids from the Strzegom-Sobótka Massif, SW Poland: constraints on the initial time of Permo-Mesozoic lithosphere thinning beneath Central Europe. Lithos, 208-209: 415-429.
- 34. Varga, R.J., Gee, J.S., Bettison-Varga, L., Anderson, R.S., Johnson, C.l., 1999. Early establishment of seafloor hydrothermal systems during structural extension: paleomagnetic evidence from the Troodos ophiolite, Cyprus. Earth and Planetary Science Letters, 171: 221-235.
- 35. Von Damm, K.L., 1990. Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences, 18: 173-204.
- 36. Vrána, S., Frýda, J., 2003. Ultrahigh-pressure grossular-rich garnetite from the Moldanubian Zone, Czech Republic. European Journal of Mineralogy, 15: 43-54.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65b29df7-48a1-49a5-a0f5-305b076ecc02