PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving heat aging and mechanical properties of fluoroelastomer using carbon nanotubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon nanotube (CNT)-, carbon black (CB)-filled fluoroelastomer (FE) and unfilled-FE compounds were prepared (CNT/FE, CB/FE and FE). The compounds were subjected to heat air aging and characterized by tensile test and X-Ray Diffraction (XRD) analysis. Results show that CNT improved tensile properties of FE before and after aging. All samples show stress induced crystallization (SIC) during tension. XRD results show that under all conditions, the crystals were in the form of γ-phase. For both aged and un-aged specimens, the degree of crystallinity (Xc) is low. After tensile stretching, Xc  of un-aged specimens increases tremendously, with larger crystal size. Under the same conditions, the order of elongation at break (EL) was FE > CB/FE > CNT/FE. Normal modulus (NM) and tangent modulus (TM) at the same conditions was in the order of CNT/FE > CB/FE > FE. Tensile strength had the order of CNT/FE > CB/FE > FE.
Rocznik
Strony
132--142
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • University of Malaya, Polymer and Composite Materials Research Laboratory, Department of Chemistry, 50603, Kuala Lumpur, Malaysia
  • Nanotechnology Research Center, Research Institute of Petroleum Industry(RIPI)-West side of Azadi Complex-Tehran-Iran, 1485733111
autor
  • University of Malaya, Polymer and Composite Materials Research Laboratory, Department of Chemistry, 50603, Kuala Lumpur, Malaysia
Bibliografia
  • 1. Endo, M., Noguchi, T., Ito, M., Takeuchi, K., Hayashi, T., Kim, Y.A., Wanibuchi, T., Jinnai, H., Terrones, M. & Dresselhaus, M.S. (2008). Extreme-performance rubber nanocomposites for probing and excavating deep oil resources using multi-walled carbon nanotubes. Adv. Func. Mat. 18, 3403-3409. DOI: 10.1002/adfm.200801136.
  • 2. Noguchi, T., Ueki, H., Inukai, S., Iinou, S. & Ito, M. (2011). U.S Patent No. 2011/0160375. Washington, D.C.: U.S. Patent and Trademark Office.
  • 3. Ito, M., Noguchi, T., Ueki, H., Takeuchi, K. & Endo, M. (2011). Carbon nanotube enables quantum leap in oil recovery. Mater. Res. Bull. 46, 1480-1484. DOI: 10.1016/j. materresbull.2011.04.028.
  • 4. Faulkner, W.R. , Mumby, K.J., Fischer, A., Jozokos, T. & Zhou, S. (2009). Multiwall carbon nanotube reinforcement of HNBR and FKM. Proc. of the Fall 176th Technical meeting of the rubber division, Pittsburgh, PA, USA, 13-15 Oct.
  • 5. Wang, Y., Liu, L., Luo, Y. & Jia, D. (2009). Aging behavior and thermal degradation of fluoroelastomer reactive blends with poly-phenol hydroxy EPDM. Polym. Degrad. Stab. 94, 443-449. DOI: 10.1016/j.polymdegradstab.2008.11.007.
  • 6. Smith, G., Park, D., Titchener, K., Davies, R. & West, R. (1995). Surface studies of oil-seal degradation. Appl. Surf. Sci. 90, 357-371. DOI: 10.1016/0169-4332(95)00165-4.
  • 7. Mago, G., Fisher, F.T. & Kalyon, D.M. (2009). Deformation- induced crystallization and associated morphology development of carbon nanotube-PVDF nanocomposites. J. Nanosci. Nanotechnol. 9, 3330-3340. DOI: http://dx.doi.org/10.1166/jnn.2009.VC08
  • 8. Huang, S., Yee, W.A., Tjiu, W.C., Liu, Y., Kotaki, M., Boey, Y.C.F., Ma, J., Liu, T. & Lu, X. (2008). Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24, 13621-13626. DOI: 10.1021/ la8024183.
  • 9. Maiti, M. & Bhowmick, A.K. (2007). Dynamic viscoelastic properties of fluoroelastomer/clay nanocomposites. Polym. Eng. Sci. 47, 1777-1787. DOI: 10.1002/pen.20877.
  • 10. Chae, D.W. & Hong, S.M. (2011). Rheology, crystallization behavior under shear, and resultant morphology of PVDF/ multiwalled carbon nanotube composites. Macromol. Res. 19, 326-331. DOI: 10.1007/s13233-011-0403-1.
  • 11. Yang, J., Wang, J., Zhang, Q., Chen, F., Deng, H., Wang, K. & Fu, Q. (2011). Cooperative effect of shear and nanoclay on the formation of polar phase in poly (vinylidene fluoride) and the resultant properties. Polymer 52, 4970-4978. DOI: 10.1016/j.polymer.2011.08.051.
  • 12. Buckley, J., Cebe, P., Cherdack, D., Crawford, J., Ince, B.S., Jenkins, M., Pan, J., Reveley, M., Washington, N. & Wolchover, N. (2006). Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47, 2411-2422. DOI: http://dx.doi.org/10.1016/j.polymer.2006.02.012
  • 13. Andrew, J.S. & Clarke, D.R. (2008). Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 24, 670-672. DOI: 10.1021/la7035407.
  • 14. Huang, F., Wei, Q., Wang, J., Cai, Y. & Huang, Y. (2008). Effect of temperature on structure, morphology and crystallinity of PVDF nanofi bers via electrospinning. e-Polym 8, 1758. DOI: 10.1515/epoly.2008.8.1.1758.
  • 15. Yee, W.A., Nguyen, A.C., Lee, P.S., Kotaki, M., Liu, Y., Tan, B.T., Mhaisalkar, S. & Lu, X. (2008). Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 49, 4196-4203. DOI: http://dx.doi.org/10.1016/j.polymer.2008.07.032
  • 16. Pham, T.T., Sridhar, V. & Kim, J.K. (2009). Fluoroelastomer- MWNT nanocomposites-1: Dispersion, morphology, physico-mechanical, and thermal properties. Polym. Compos. 30, 121-130. DOI: 10.1002/pc.20521.
  • 17. Shanmugharaj, A., Bae, J., Lee, K.Y., Noh, W.H., Lee, S.H. & Ryu, S.H. (2007). Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos. Sci. Technol. 67, 1813-1822. DOI: 10.1016/j.compscitech.2006.10.021.
  • 18. Freimuth, H., Sinn, C. & Dettenamaier, M. (1996). Structure and deformation behaviour of a vinylidene fluoride-tetrafl uoroethylene- hexafluoropropylene terpolymer. Polymer 37, 831-836. DOI: http://dx.doi.org/10.1016/0032-3861(96)87261-2
  • 19. Satapathy, S., Pawar, S., Gupta, P. & Varma, K. (2011). Effect of annealing on the phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bull. Mater. Sci. 34, 727-733. DOI: http://dx.doi.org/10.1007/s12034-011-0187-0
  • 20. Elashmawi, I. (2008). Effect of LiCl filler on the structure and morphology of PVDF films. Mater. Chem. Phys. 107, 96-100. DOI: 10.1016/j.matchemphys.2007.06.045.
  • 21. Gao, K., Hu, X., Dai, C. & Yi, T. (2006). Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater. Sci. Eng. B 131, 100-105. DOI: 10.1016/j.mseb.2006.03.035.
  • 22. Rana, D.S., Chaturvedi, D. & Quamara, J. (2009). Morphology, crystalline structure, and chemical properties of 100 MeV Ag-ion beam irradiated polyvinylidene fluoride (PVDF) thin film. J. Optoelectron. Adv. M. 11, 705-712.
  • 23. Ozkazanc, E., Guney, H.Y., Guner, S. & Abaci, U. (2010). Morphological and dielectric properties of barium chloride-filled poly (vinylidene fluoride) films. Polym. Compos. 31, 1782-1789. DOI: 10.1002/pc.20970.
  • 24. Sajkiewicz, P. (1999). Crystallization behaviour of poly (vinylidene fluoride). Eur. Polym. J. 35, 1581-1590. DOI: 10.1016/ S0014-3057(98)00242-0.
  • 25. Tieyuan, F., Zhishen, M., Ping, H., Yuchen, Q., Shuyun, W. & Donglin, C. (1986). Study on factors affecting room temperature transition of polytetrafl uoroethylene. Chin. J. Polym. Sci. (CJPS) 4, 170-179.
  • 26. Heidarian, J. & Hassan, A. (2014). Microstructural and thermal properties of fluoroelastomer/carbon nanotube composites. Compos. Part B-Eng. 58, 166-174. DOI: http://dx.doi.org/10.1016/j.compositesb.2013.10.054
  • 27. Heidarian, J., Hassan, A. & Normasmira, A.R. (2015). Improving the thermal properties of fluoroelastomer (Viton GF-600S) using acidic surface modified carbon nanotube. Polímeros 25(4), 392-401. DOI: 10.1080/09276440.2016.1127668.
  • 28. Heidarian, J. & Hassan, A. (2015). Improving thermal properties of fluoroelastomer using carbon nanotubes in presence of air and under nitrogen flow. Asian J. Chem. 27, 1235. DOI: http://dx.doi.org/10.14233/ajchem.2015.17200
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65aeda23-af8c-4dc5-8914-4cd788c427a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.