PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green Chemistry Biosynthesis of Calcium Oxide Nanoparticles as Antibacterial Waste Microorganisms in Waters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Calcium oxide (CaO) nanoparticles have garnered significant interest in various environmental applications, particularly in water treatment and the control of microbial pollution. This research introduces innovative strategies for water management and waste treatment through the application of advanced technology grounded in nanoscience, utilizing local resources. The primary objective of this study is to synthesize CaO nanoparticles via a green chemistry method, employing a bioreductant derived from the Bitti (Vitex cofassus) plant extract. This green chemistry approach is not only environmentally benign but also effective in producing stable nanoparticles with controlled dimensions. Characterization of the nanoparticles was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to ascertain their crystal structure, morphology, and particle size. The results indicated that the calcium oxide nanoparticles exhibit a face-centered cubic (FCC) crystal phase, irregular surface morphology, and a spherical shape, with an average particle size of 24.87 nm. The antibacterial efficacy of calcium oxide nanoparticles was evaluated against Escherichia coli, with variations in nanoparticle concentrations of 1%, 3%, and 5%, resulting in average inhibition zone diameters of 9.59 mm, 10.78 mm, and 11.78 mm, respectively. The positive control (Chloramphenicol) demonstrated an inhibition zone of 12.65 mm, while the negative control (sterile water) showed no inhibition (0 mm). Similarly, for Staphylococcus aureus, the inhibition zone diameters with nanoparticle concentrations of 1%, 3%, and 5% were 10.26 mm, 11.15 mm, and 14.15 mm, respectively, with the positive control exhibiting an inhibition zone of 12.82 mm and the negative control showing no inhibition (0 mm). The CaO nanoparticles demonstrated greater efficacy against Staphylococcus aureus compared to Escherichia coli, exhibiting the capability to inhibit and eliminate both bacterial strains. The application of these nanoparticles as antibacterial agents presents a promising approach to effectively mitigate microbial waste in aquatic environments, suggesting their potential use as a solution for environmentally friendly microbial waste treatment.
Twórcy
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
autor
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
Bibliografia
  • 1. Abbas, I.K., Aadim, K.A., 2022. Synthesis and Study of Structural Properties of Calcium Oxide Nanoparticles Produced by Laser-Induced Plasma and its Effect on Antibacterial Activity. Sci. Technol. Indones. 7. https://doi.org/10.26554/sti.2022.7.4.427-434
  • 2. Ahmad, W., Kamboj, A., Banerjee, I., Jaiswal, K.K., 2022. Pomegranate peels mediated synthesis of calcium oxide (CaO) nanoparticles, characterization, and antimicrobial applications. Inorg. Nano-Metal Chem. https://doi.org/10.1080/24701556.2021.2025080
  • 3. Almwafy, A., 2020. Preliminary characterization and identification of gram positive hemolysis bacteria. Al-Azhar J. Pharm. Sci. 62. https://doi.org/10.21608/ajps.2020.118378
  • 4. Alobaidi, Y.M., Ali, M.M., Mohammed, A.M., 2022. Synthesis of Calcium Oxide Nanoparticles from Waste Eggshell by Thermal Decomposition and their Applications. Jordan J. Biol. Sci. 15. https://doi.org/10.54319/jjbs/150215
  • 5. Aysun Mercimek Takci, H., Sumengen Ozdenefe, M., Buyukkaya Kayis, F., Dincer, S., 2024. Bacteriological Perspective of Water Quality, in: Water Quality - New Perspectives. https://doi.org/10.5772/intechopen.112874
  • 6. Bintang, A., Syafri, M., Rante, A., Marpaung, M.P., Fitrah, F., Putri, S.K., Yusrianto, Y., 2023. Quality of Liquid Waste at the General Hospital in Makassar. Int. J. Health Sci. (Qassim). 1. https://doi.org/10.59585/ijhs.v1i4.181
  • 7. Bôlla de Menezes, L., Cristine Ladwig Muraro, P., Moro Druzian, D., Patricia Moreno Ruiz, Y., Galembeck, A., Pavoski, G., Crocce Romano Espinosa, D., Leonardo da Silva, W., 2024. Calcium oxide nanoparticles: Biosynthesis, characterization and photocatalytic activity for application in yellow tartrazine dye removal. J. Photochem. Photobiol. A Chem. 447. https://doi.org/10.1016/j.jphotochem.2023.115182
  • 8. Chandra, M.A., 2023. Identification of bacterial morphology and catalase coagulation test on propionibacterium acnes bacteria. J. Heal. Manag. Pharm. Explor. 1. https://doi.org/10.52465/johmpe.v1i2.152
  • 9. Costinar, L., Herman, V., Pitoiu, E., Iancu, I., Degi, J., Hulea, A., Pascu, C., 2022. Boar semen contamination: Identification of gram-negative bacteria and antimicrobial resistance profile. Animals 12. https://doi.org/10.3390/ani12010043
  • 10. Dewi, D.K., Putri, V.M., Febriyanti, V., Yudha, C.S., 2023. Calcination of Various Eggshell Wastes into CaO Heterogeneous Catalysts. Equilib. J. Chem. Eng. 7. https://doi.org/10.20961/equilibrium.v7i1.74484
  • 11. Djayasinga, R., Situmeang, R.T.M., Unob, F., Hadi, S., Manurung, P., Sumardi, S., 2024. Chicken Eggshell Powder as Antibacterial Against Staphylococcus aureus and Escherichia coli Through In Vitro Studies. J. Multidiscip. Appl. Nat. Sci. 4. https://doi.org/10.47352/jmans.2774-3047.205
  • 12. Dobrzynska, M., Napierala, M., Florek, E., 2020. Flavonoid nanoparticles: A promising approach for cancer therapy. Biomolecules. https://doi.org/10.3390/biom10091268
  • 13. El-sherif, A.A., Hamad, A.M., Shams-Eldin, E., Mohamed, H.A.A.E., Ahmed, A.M., Mohamed, M.A., Abdelaziz, Y.S., Sayed, F.A.Z., El qassem Mahmoud, E.A.A., Abd El-Daim, T.M., Fahmy, H.M., 2023. Power of recycling waste cooking oil into biodiesel via green CaO-based eggshells/Ag heterogeneous nanocatalyst. Renew. Energy 202. https://doi.org/10.1016/j.renene.2022.12.041
  • 14. Garcia, B.L.N., Fidelis, C.E., Freu, G., Granja, B. de M., dos Santos, M.V., 2021. Evaluation of Chromogenic Culture Media for Rapid Identification of Gram-Positive Bacteria Causing Mastitis. Front. Vet. Sci. 8. https://doi.org/10.3389/fvets.2021.662201
  • 15. Han, J.Y., Wiederoder, M., DeVoe, D.L., 2019. Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith. Microsystems Nanoeng. 5. https://doi.org/10.1038/s41378-019-0063-4
  • 16. Harsha Hebbar, H.R., Math, M.C., Yatish, K. V., 2018. Optimization and kinetic study of CaO nanoparticles catalyzed biodiesel production from Bombax ceiba oil. Energy 143. https://doi.org/10.1016/j.energy.2017.10.118
  • 17. Jadhav, V., Bhagare, A., Wahab, S., Lokhande, D., Vaidya, C., Dhayagude, A., Khalid, M., Aher, J., Mezni, A., Dutta, M., 2022. Green Synthesized Calcium Oxide Nanoparticles (CaO NPs) Using Leaves Aqueous Extract of Moringa oleifera and Evaluation of Their Antibacterial Activities. J. Nanomater. 2022. https://doi.org/10.1155/2022/9047507
  • 18. Jiang, B., Xia, D., Yu, B., Xiong, R., Ao, W., Zhang, P., Cong, L., 2019. An environment-friendly process for limestone calcination with CO2 looping and recovery. J. Clean. Prod. 240. https://doi.org/10.1016/j.jclepro.2019.118147
  • 19. Khan, A.U., Hussain, T., Abdullah, Khan, M.A., Almostafa, M.M., Younis, N.S., Yahya, G., 2023. Antibacterial and Antibiofilm Activity of Ficus carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles. Molecules 28. https://doi.org/10.3390/molecules28145553
  • 20. Kim, H.R., Song, M.Y., Chan Kim, B., 2020. Rapid isolation of bacteria-specific aptamers with a nonSELEX-based method. Anal. Biochem. 591. https://doi.org/10.1016/j.ab.2019.113542
  • 21. Kumar, S., Sharma, V., Pradhan, J.K., Sharma, S.K., Singh, P., Sharma, J.K., 2021. Structural, optical and antibacterial response of CaO nanoparticles synthesized via direct precipitation technique. Nano Biomed. Eng. 13. https://doi.org/10.5101/NBE.V13I2.P172-178
  • 22. Lai, L., Imai, T., Umezu, M., Ishii, M., Ogura, H., 2020. Possibility of calcium oxide from natural limestone including impurities for chemical heat pump. Energies 13. https://doi.org/10.3390/en13040803
  • 23. Li, D., Wang, Y., Li, Z., 2022. Limestone Calcination Kinetics in Microfluidized Bed Thermogravimetric Analysis (MFB-TGA) for Calcium Looping. Catalysts 12. https://doi.org/10.3390/catal12121661
  • 24. Li, H., Li, L., Chi, Y., Tian, Q., Zhou, T., Han, C., Zhu, Y., Zhou, Y., 2020. Development of a standardized Gram stain procedure for bacteria and inflammatory cells using an automated staining instrument. Microbiologyopen 9. https://doi.org/10.1002/mbo3.1099
  • 25. Li, Y., Lou, D., Zhou, X., Zhuang, X., Wang, C., 2024. Alteration of bacterial community composition in the sediments of an urban artificial river caused by sewage discharge. PeerJ 12. https://doi.org/10.7717/peerj.16931
  • 26. López-Badillo, C.M., Hernández-González, M., Hernández-Centeno, F., Olivas-Armendáriz, I., Rodríguez-González, C.A., Múzquiz-Ramos, E.M., López-Cuevas, J., López-De la Peña, H.Y., 2021. Antibacterial activity and in vitro cytotoxicity studies of Ag-doped CaO nanoparticles. Mater. Lett. 283. https://doi.org/10.1016/j.matlet.2020.128741
  • 27. Lv, S., Li, Y., Zhao, S., Shao, Z., 2024. Biodegradation of Typical Plastics: From Microbial Diversity to Metabolic Mechanisms. Int. J. Mol. Sci. https://doi.org/10.3390/ijms25010593
  • 28. M, K., Sundararaman, S., J, A. kumar, Deivasigamani, P., M, R., 2023. Synthesis and characterization of barium doped CaO heterogeneous nanocatalyst for the production of biodiesel from Catharanthus roseus seeds: Kinetics, optimization and performance evaluation. Environ. Res. 222. https://doi.org/10.1016/j.envres.2023.115336
  • 29. Mahmoud, S.M., Barakat, O.S., Kotram, L.E., 2023. Stimulation the immune response through ξ potential on core–shell ‘calcium oxide/magnetite iron oxides’ nanoparticles. Anim. Biotechnol. 34. https://doi.org/10.1080/10495398.2022.2111310
  • 30. Maringgal, B., Hashim, N., Tawakkal, I.S.M.A., Hamzah, M.H., Mohamed, M.T.M., 2020. Biosynthesis of CaO nanoparticles using Trigona sp. Honey: Physicochemical characterization, antifungal activity, and cytotoxicity properties. J. Mater. Res. Technol. 9. https://doi.org/10.1016/j.jmrt.2020.08.054
  • 31. Mazher, M., Ishtiaq, M., Hamid, B., Haq, S.M., Mazhar, A., Bashir, F., Mazhar, M., Mahmoud, E.A., Casini, R., Alataway, A., Dewidar, A.Z., Elansary, H.O., 2023. Biosynthesis and characterization of calcium oxide nanoparticles from citrullus colocynthis fruit extracts; their biocompatibility and bioactivities. Materials (Basel). 16, 1–21. https://doi.org/10.3390/ma16072768
  • 32. Mbenga, Y., Mthana, M.S., Mthiyane, D.M.N., Ogunjinmi, O.E., Singh, M., Onwudiwe, D.C., 2023. Facile biosynthesis of CaO nanoparticles using extract of Tulbaghia violacea and evaluation of their antibacterial and cytotoxicity activity. Inorg. Chem. Commun. 151. https://doi.org/10.1016/j.inoche.2023.110581
  • 33. Meng, X., Xu, Z., Wang, C., Patitz, J., Boccaccini, A.R., Burkovski, A., Zheng, K., 2024. Surface engineering of mesoporous bioactive glass nanoparticles with bacteriophages for enhanced antibacterial activity. Colloids Surfaces B Biointerfaces 234. https://doi.org/10.1016/j.colsurfb.2023.113714
  • 34. Nam, S.H., Kim, D., An, S., An, Y.J., 2022. Validation of the paper-disc soil method using soil alga Chlorococcum infusionum to quantitatively determine the toxicity of heavy metals. Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol. 258. https://doi.org/10.1016/j.cbpc.2022.109380
  • 35. Nami, Navabeh, Nami, Nasrin, Bostanabad, A.S., 2022. Biosynthesis and Characterization of Fe3O4/ CaO Nanoparticles and Investigation of Its Catalytic Property. J. Nanostructures 12. https://doi.org/10.22052/JNS.2022.01.015
  • 36. Rabiei, M., Palevicius, A., Monshi, A., Nasiri, S., Vilkauskas, A., Janusas, G., 2020. Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials 10. https://doi.org/10.3390/nano10091627
  • 37. Raj, V.P., Ilakiya, T., Parameswari, E., Davamani, V., 2020. Assessment of New Ecotechnological Measures to Restore the Eutrophicated Lake. Int. J. Curr. Microbiol. Appl. Sci. 9. https://doi.org/10.20546/ijcmas.2020.903.170
  • 38. Ramola, B., Joshi, N.C., 2019. Green Synthesis, Characterisations and Antimicrobial Activities of CaO Nanoparticles. Orient. J. Chem. 35. https://doi.org/10.13005/ojc/350333
  • 39. Raza, H.Z., Shah, A.A., Noreen, Z., Usman, S., Zafar, S., Yasin, N.A., Sayed, S.R.M., Al-Mana, F.A., Elansary, H.O., Ahmad, A., Farzana habib, Aslam, M., 2024. Calcium oxide nanoparticles mitigate lead stress in Abelmoschus esculentus though improving the key antioxidative enzymes, nutritional content and modulation of stress markers. Plant Physiol. Biochem. 206. https://doi.org/10.1016/j.plaphy.2023.108171
  • 40. Ren, H., Zhang, X., Li, Y., Zhang, D., Huang, F., Zhang, Z., 2023. Preparation of Cross-Sectional Membrane Samples for Scanning Electron Microscopy Characterizations Using a New Frozen Section Technique. Membranes (Basel). 13. https://doi.org/10.3390/membranes13070634
  • 41. Sari, Y.C., Junaidi, R., Hasan, A., 2022. Application of limestone as heterogene catalyst for biodiesel production from waste cooking oil. J. Pendidik. dan Teknol. Indones. 2. https://doi.org/10.52436/1.jpti.204
  • 42. Sd, M.K.V., N, C.B., T, V.V.K., N, V., 2023. Beneficiation of low-grade limestone by flotation, in: Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.07.041
  • 43. Shamima Shultana, Ruhul A. Khan, 2022. Water quality assessment, reasons of river water pollution, impact on human health and remediation of polluted river water. GSC Adv. Res. Rev. 10. https://doi.org/10.30574/gscarr.2022.10.2.0053
  • 44. Sharma, H., Lal, R., Pandey, M., Shrivastav, A., 2023. Biosynthesis of CaO nanoparticles using cleome viscosa leaf extract and investigation of their antioxidative and cytotoxicity activity. Orient. J. Chem. 39. https://doi.org/10.13005/ojc/390123
  • 45. Some, S., Mondal, R., Mitra, D., Jain, D., Verma, D., Das, S., 2021. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus. https://doi.org/10.1016/j.nexus.2021.100008
  • 46. Wang, X., Patil, N., Li, F., Wang, Z., Zhan, H., Schmidt, D., Thompson, P., Guo, Y., Landersdorfer, C.B., Shen, H.H., Peleg, A.Y., Li, J., Song, J., 2024. PmxPred: A data-driven approach for the identification of active polymyxin analogues against gramnegative bacteria. Comput. Biol. Med. 168. https://doi.org/10.1016/j.compbiomed.2023.107681
  • 47. Wichmann, C., Rösch, P., Popp, J., 2021. Isolation of bacteria from artificial bronchoalveolar lavage fluid using density gradient centrifugation and their accessibility by Raman spectroscopy. Anal. Bioanal. Chem. 413. https://doi.org/10.1007/s00216-021-03488-0
  • 48. Xiao, Y.H., Luo, Z.X., Wu, H.W., Xu, D.R., Zhao, R., 2024. Metagenomic next-generation sequencing for the identification of infections caused by Gram-negative pathogens and the prediction of antimicrobial resistance. Lab Med. 55. https://doi.org/10.1093/labmed/lmad039
  • 49. Zheng, K., Balasubramanian, P., Paterson, T.E., Stein, R., MacNeil, S., Fiorilli, S., Vitale-Brovarone, C., Shepherd, J., Boccaccini, A.R., 2019. Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model. Mater. Sci. Eng. C 103. https://doi.org/10.1016/j.msec.2019.109764
  • 50. Zhou, Y., Li, J., Li, Z., Yin, H., Zhu, S., Chen, Z., 2024. Rapid and robust bacterial species identification using hyperspectral microscopy and gram staining techniques. J. Biophotonics 17. https://doi.org/10.1002/jbio.202300449
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65ae7753-79f0-4eb5-883c-9aece8762ec9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.