PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Nonhomogeneous Structures in Steel Contents in Terms of Fatigue Resistance Using Analytical Hierarchy Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fatigue resistance of steel containing non-metallic inclusions (NMIs) varies widely, depending on many criteria; therefore, finding the most compromised types of NMIs is a sober objective that may significantly reduce severe damage and premature failure in many applications, such as bearings, gears, transmission shafts, etc. The Multiple Criteria Decision-Making (MCDM) methodologies have been used in this study to assess the more effective NMI types using the Analytical Hierarchy Process (AHP) by Expert Choice (EC) software. The five most common types of non-metallic inclusions selected are oxides, sulfides, carbides, silicates, and nitrides, based on different criteria: size, shape, distribution, mechanical properties, and quantity. The results showed that the oxide NMIs are the optimum type relative to the other four options regarding the fatigue resistance of about 35%, probably due to their spherical shape and small size. The most dominant criterion is mechanical properties, which have an effective percentage of 34.6% among the other criteria. It means that the reduction of other types rather than oxide NMIs probably enhances the fatigue resistance of the steel.
Twórcy
  • University of Misan, Engineering College, Petroleum Engineering Department, Iraq
  • University of Misan, Engineering College, Petroleum Engineering Department, Iraq
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poznań, Poland
  • University of Misan, Engineering College, Petroleum Engineering Department, Iraq
  • Faculty of Civil and Transport Engineering, Poznan University of Technology, Poznań, Poland
Bibliografia
  • 1. S.I. Gubenko, A.B. Sychkov, E.V. Parusov, A.I. Denisenko, and A.N. Zavalishchin, Corrosive damage close to nonmetallic inclusions in bearing steels. Steel Transl., 2018, 48(3), doi: 10.3103/S0967091218030063.
  • 2. A. Melander and A. Gustavsson, An FEM study of driving forces of short cracks at inclusions in hard steels. Int. J. Fatigue, 1 1996, 8(6), pp. 389–399, doi: 10.1016/0142-1123(96)00069-2.
  • 3. M. Cerullo and V. Tvergaard, Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing. Int. J. Struct. Integr., 2015, 6(1), pp. 124–141, doi: 10.1108/IJSI-04-2014-0020.
  • 4. Y. Murakami, Effects of Small Defects and Nonmetallic Inclusions. Oxford, 2002.
  • 5. H.K.D.H. Bhadeshia, Steels for bearings. Prog. Mater. Sci., 2012, 57(2), pp. 268–435, doi: 10.1016/j.pmatsci.2011.06.002.
  • 6. Y. Murakami and M. Endo, Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue, 1994, 16(3), pp. 163–182, doi: 10.1016/0142-1123(94)90001-9.
  • 7. A.L.V. Da Costa E Silva, The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J. Mater. Res. Technol., 2019, 8(2), pp. 2408–2422, doi: 10.1016/j.jmrt.2019.01.009.
  • 8. P.A. Thornton, The influence of nonmetallic inclusions on the mechanical properties of steel: A review. J. Mater. Sci., 1971, 6(4), pp. 347–356, doi: 10.1007/PL00020378.
  • 9. E.A. Shur, N.Y. Bychkova, and S.M. Trushevsky, Physical metallurgy aspects of rolling contact fatigue of rail steels. Wear, 2005, 258(7–8), pp. 1165–1171, doi: 10.1016/j.wear.2004.03.027.
  • 10. Y. Murakami, S. Kodama, and S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions,”Int. J. Fatigue, 1989, 11(5), pp. 291–298. doi: 10.1016/0142-1123(89)90054-6.
  • 11. J.Z. He, J.N. Lu, X.Y. Deng, X.Q. Xing, and Z.C. Luo, Premature fracture of high-strength suspension springs caused by corrosion fatigue cracking. Results Eng., 2022, 16 (Sept.). doi: 10.1016/j.rineng.2022.100749.
  • 12. S.M. Moghaddam, F. Sadeghi, K. Paulson, N. Weinzapfel, M. Correns, and M. Dinkel, A 3D numerical and experimental investigation of microstructural alterations around non-metallic inclusions in bearing steel. Int. J. Fatigue, 2016, 88, pp. 29–41, doi: 10.1016/j.ijfatigue.2016.02.034.
  • 13. U. Zerbst, M. Madia, C. Klinger, D. Bettge, and Y. Murakami, Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions. Eng. Fail. Anal., 2019, 98 (Jan.), pp. 228–239, doi: 10.1016/j.engfailanal.2019.01.054.
  • 14. H.A. Al-Tameemi, H. Long, and R.S. Dwyer-Joyce, Initiation of sub-surface micro-cracks and white etching areas from debonding at non-metallic inclusions in wind turbine gearbox bearing. Wear, 2018, 406–407 (Jan.), pp. 22–32, doi: 10.1016/j.wear.2018.03.008.
  • 15. T.A. Mankhi, J.H. Al-Bedhany, and S. Legutko, Investigation of subsurface microcracks causing premature failure in wind turbine gearbox bearings. Results Eng., 2022, 16 (Aug.), doi: 10.1016/j.rineng.2022.100667.
  • 16. P.C. Becker, Microstructural changes around non-metallic inclusions caused by rolling-contact fatigue of ball-bearing steels. Met. Technol., 1981, 8(1), pp. 234–243, doi: 10.1179/030716981803275415.
  • 17. X. Xu, Z. Yu, and S. Mao, Effect of extra-large compound calcium-aluminosilicate inclusions on cracking of camshafts. Eng. Fail. Anal., 2020, 110 (Jan.), 104408, doi: 10.1016/j.engfailanal.2020.104408.
  • 18. F. Gyakwaa, T. Alatarvas, Q. Shu, and T. Fabritius, Identifying oxide and cas non-metallic inclusions in steel with Raman spectroscopy. Metals (Basel)., 2023, 13(1), doi: 10.3390/met13010043.
  • 19. J.H.I. Al-Bedhany, Effect of compression, impact and slipping on rolling contact fatigue and subsurface microstructural damage. The University of Sheffield, 2020. [Online]. Available: http://etheses.whiterose.ac.uk/27474/
  • 20. Y. Murakami, Effect of small defets and nonmetallic inclusions on the fatigue strength of metals. Chem. Pharm. Bull., 40(6), pp. 1569–1572, 1992.
  • 21. S.L. Jasim H. Al-Bedhany, Tahseen Ali Mankhi, A surface study of failed planetary wind turbine gearbox bearings to investigate the causes of the bearing premature failure issue. Heliyon, 2023, 1, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4480217
  • 22. T. Bruce, Analysis of the Premature Failure of Wind Turbine Gearbox Bearings. The University of Sheffield, 2016.
  • 23. M.H. Evans, White structure flaking (WSF) in wind turbine gearbox bearings: Effects of ‘butterflies’ and white etching cracks (WECs). Mater. Sci. Technol., 2012, 28(1), pp. 3–22, doi: 10.1179/026708311X13135950699254.
  • 24. M.H. Evans, A.D. Richardson, L. Wang, R.J.K. Wood, and W.B. Anderson, Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribol. Int., 2014, 75, pp. 87–97, doi: 10.1016/j.triboint.2014.03.012.
  • 25. S. Mobasher Moghaddam et al., Effect of non-metallic inclusions on butterfly wing initiation, crack formation, and spall geometry in bearing steels.Int. J. Fatigue, 2015, 80, pp. 203–215, doi: 10.1016/j.ijfatigue.2015.05.010.
  • 26. B. Gould, N.G. Demas, and A.C. Greco, The influence of steel microstructure and inclusion characteristics on the formation of premature bearing failures with microstructural alterations. Mater. Sci. Eng. A, 2019, 751 (Feb.), pp. 237–245, doi: 10.1016/j.msea.2019.02.084.
  • 27. T. Gram and A. Vickerfält, Characterization of non-metallic inclusions according to morphology and composition A comparison of two different steels before and after turning. Mater. Sci., 2015, 22, [On-line]. Available: http://www.diva-portal.org/smash/get/diva2:826891/FULLTEXT01.pdf
  • 28. S. Beretta, C. Anderson, and Y. Murakami, Extreme value models for the assessment of steels containing multiple types of inclusion. Acta Mater., 2006, 54(8), pp. 2277–2289, doi: 10.1016/j.actamat.2006.01.016.
  • 29. Y. Sandaiji, E. Tamura, and T. Tsuchida, Influence of inclusion type on internal fatigue fracture under cyclic shear stress. Procedia Mater. Sci., 3, pp.894–899, 2014, doi: 10.1016/j.mspro.2014.06.145.
  • 30. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos, Study of rolling contact fatigue of bearing steels in relation to various oxide inclusions. Mater. Des., 2011, 32(3), pp. 1605–1611, doi: 10.1016/j.matdes.2010.08.052.
  • 31. O.M. Adaba, Oxide inclusion evolution and factors that influence their size and morphology. Missouri University of Science and Technology, 2019. https://core.ac.uk/download/pdf/229317847.pdf
  • 32. H. Wang, Y. Jia, Y. Li, L. Zhao, C. Yang, and D. Cheng, Rapid analysis of content and particle sizes of aluminum inclusions in low and middle alloy steel by laser-induced breakdown spectroscopy. Spectrochim. Acta - Part B At. Spectrosc., 2020, 171(76), 105927, doi: 10.1016/j.sab.2020.105927.
  • 33. J. Maciejewski, The effects of sulfide inclusions on mechanical properties and failures of steel components. J. Fail. Anal. Prev., 2015, 15(2), pp. 169–178, doi: 10.1007/s11668-015-9940-9.
  • 34. T. Makino et al., Rolling contact fatigue damage from artificial defects and sulphide inclusions in high strength steel. Procedia Struct. Integr., 2017, 7, pp. 468–475, doi: 10.1016/j.prostr.2017.11.114.
  • 35. J. Burja, M. Koležnik, Š. Župerl, and G. Klančnik, Nitrogen and nitride non-metallic inclusions in teel. Mater. Tehnol., 2019, 53(6), pp. 919–928, doi: 10.17222/mit.2019.247.
  • 36. K.H. McDermott, R.C. Greenwood, E.R.D. Scott, I.A. Franchi, and M. Anand, Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites. Geochim. Cosmochim. Acta, 2016, 173 (Oct.), pp. 97–113, doi: 10.1016/j.gca.2015.10.014.
  • 37. Q. Zhang, Y. Min, H. Xu, J. Xu, and C. Liu, Formation and evolution of silicate inclusions in molten steel by magnesium treatment. ISIJ Int., 2019, 59(3), pp. 391–397, doi: 10.2355/isijinternational.ISIJINT-2018-543.
  • 38. C. Wang, X. gang Liu, J. tao Gui, Z. long Du, Z. feng Xu, and B. feng Guo, Effect of MnS inclusions on plastic deformation and fracture behavior of the steel matrix at high temperature. Vacuum, 2020, 174 (Jan.), 109209, doi: 10.1016/j.vacuum.2020.109209.
  • 39. G. Wranglen, Pitting and sulphide inclusions in steel. Corros. Sci., 1974, 14(5), pp. 331–349, doi: 10.1016/S0010-938X(74)80047-8.
  • 40. J. Guan, L. Wang, C. Zhang, and X. Ma, Effects of non-metallic inclusions on the crack propagation in bearing steel. Tribol. Int., 2017, 106 (Oct.), pp. 123–131, doi: 10.1016/j.triboint.2016.10.030.
  • 41. C.S. Meyer, Crack-inclusion interaction: A review. Army Research Laboratory, Delaware, 2014. doi: 10.13140/RG.2.2.13028.07041.
  • 42. W. Solano-Alvarez et al., Soft novel form of white-etching matter and ductile failure of carbide-free bainitic steels under rolling contact stresses, Acta Mater., 2016, 121, pp. 215–226, doi: 10.1016/j.actamat.2016.09.012.
  • 43. G. Guetard, I. Toda-Caraballo, and P.E.J. Rivera-Díaz-Del-Castillo, Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50. Int. J. Fatigue, 2016, 91, pp. 59–67, doi: 10.1016/j.ijfatigue.2016.05.026.
  • 44. D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime. Int. J. Fatigue, 2014, 64, pp. 114–120, doi: 10.1016/j.ijfatigue.2014.03.003.
  • 45. ISO-4967, International Standard: Steel – Determination of content of nonmetallic inclusions – Micrographic method using standard diagrams. 2013, pp. 1–37.
  • 46. M. Cerullo, Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng., 2014, 74, pp. 333–338, doi: 10.1016/j.proeng.2014.06.274.
  • 47. L. Holappa and O. Wijk, Inclusion Engineering, 1st ed.. Elsevier Ltd., 2014. doi: 10.1016/B978-0-08-096988-6.00008-0.
  • 48. P. Juvonen, Effects of non-metallic inclusions on fatigue properties of ultra-clean spring steels. Helsinki University of Technology, 2004. http://lib.hut.fi/Diss/2004/isbn951227423X
  • 49. C.D. Liu, M.N. Bassim, and S.S. Lawrence, Evaluation of fatigue-crack initiation at inclusions in fully pearlitic steels. Mater. Sci. Eng. A, 1993, 167(1–2), pp. 107–113, doi: 10.1016/0921-5093(93)90343-D.
  • 50. D. Krewerth, T. Lippmann, A. Weidner, and H. Biermann, Influence of non-metallic inclusions on fatigue life in the very high cycle fatigue regime. Int. J. Fatigue, 2016, 84, pp. 40–52, doi: 10.1016/j.ijfatigue.2015.11.001.
  • 51. T. Bruce, H. Long, and R.S. Dwyer-Joyce, Threshold maps for inclusion-initiated micro-cracks and white etching areas in bearing steel: The role of impact loading and surface sliding. Tribol. Lett., 2018, 66(3), doi: 10.1007/s11249-018-1068-0.
  • 52. A.L.V. Da Costa E Silva, Non-metallic inclusions in steels – origin and control. J. Mater. Res. Technol., 2018, 7(3), pp. 283–299, doi: 10.1016/j.jmrt.2018.04.003.
  • 53. H. Yamada and N. Tsushima, Evaluation of non-metallic inclusions of steels used for rolling bearings from fracture surface by rotating ring fatigue fracture test. J. Chem. Inf. Model., 2013, 53(9), pp. 1–21,
  • 54. Y. Nakai et al., Effects of inclusion size and orientation on rolling contact fatigue crack initiation observed by laminography using ultra-bright synchrotron radiation. Procedia Struct. Integr., 2016, 2, pp. 3117–3124, doi: 10.1016/j.prostr.2016.06.389.
  • 55. Y. Neishi, T. Makino, N. Matsui, H. Matsumoto, M. Higashida, and H. Ambai, Influence of the inclusion shape on the rolling contact fatigue life of carburized steels. Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(5), pp. 2131–2140, doi: 10.1007/s11661-012-1344-9.
  • 56. P. Shen and J. Fu, Morphology study on inclusion modifications using Mg-Ca treatment in resulfurized special steel. Materials (Basel), 2019, 12(2), doi: 10.3390/ma12020197.
  • 57. D.H. Herring, Steel cleanliness: Inclusions in steel. Heat Treat Dr., 2009, August. [Online]. Available: www.IndustrialHeating.com.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65ad64c1-4546-4589-97dc-6856940a52b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.