Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper provides a discussion concerning results of CO2 removal from a gas mixture by the application of aqueous solutions of ethanoloamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) promoted with piperazine (PZ). The studies were conducted using a process development unit. Research of such a scale provides far more reliable representation of the actual industrial process than modelling and laboratory tests. The studies comprised comparative analyses entailing identical energy supplied to a reboiler as well as tests cond ucted at similar process efficiencies for both solvents. The results thus obtained imply that using AMP/PZ enables reduction of the solvent heat duty. Moreover, while using AMP/PZ temperature decrease was also observed in the columns.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
39--48
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
autor
- Institute for Chemical Processing of Coal, ul. Zamkowa 1, 41-803 Zabrze, Poland
Bibliografia
- 1. Artanto Y., Jansen J., Pearson P., Puxty G., Cottrell A., Meuleman E., Feron P., 2014. Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal–fired power station. Int. J. Greenh. Gas Control, 20, 189–195. DOI: 10.1016/j.ijggc.2013.11.002.
- 2. Asendrych D., Niegodajew P., Drobniak S., 2013. CFD Modelling of CO2 capture in a packed bed by chemical absorption. Chem. Process Eng., 34, 269–282. DOI: 10.2478/cpe-2013-0022.
- 3. Barchas R., Davis R., 1992. The Kerr-McGee/ABB Lummus Crest technology for the recovery of CO2 from stack gases. Energy Convers. Manag., 33, 333–340. DOI:.10.1016/0196-8904(92)90028-U.
- 4. Chen W.-H., Chen S.-M., Hung C.-I., 2013. Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach. Appl. Energy, 111, 731–741. DOI:10.1016/j.apenergy.2013.05.051.
- 5. Davis J., Rochelle G., 2009. Thermal degradation of monoethanolamine at stripper conditions. Energy Procedia, 1, 327–333. DOI: 10.1016/j.egypro.2009.01.045.
- 6. Dreszer K., Więcław-Solny L., 2008. Obniżenie emisji CO2 z sektora energetycznego - możliwe ścieżki wyboru technologii. Polityka Energ., 11 (1), 117–129.
- 7. Farla J.C.M., Hendriks C.A., Blok K., 1995. Carbon dioxide recovery from industrial processes. Clim. Change, 29, 439–461. DOI: 10.1007/BF01092428.
- 8. Fredriksen S.B., Jens K.-J., 2013. Oxidative degradation of aqueous amine solutions of MEA, AMP, MDEA, PZ: A review. Energy Procedia, 37, 1770–1777. DOI: 10.1016/j.egypro.2013.06.053.
- 9. Kim I., Svendsen H.F., 2007. Heat of absorption of carbon dioxide (CO2) in monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions. Ind. Eng. Chem. Res., 46, 5803–5809. DOI: 10.1021/ie0616489.
- 10. Kittel J., Idem R., Gelowitz D., Tontiwachwuthikul P., Parrain G., Bonneau A., 2009. Corrosion in MEA units for CO2 capture: Pilot plant studies. Energy Procedia, 1, 791–797. DOI: 10.1016/j.egypro.2009.01.105.
- 11. Krótki A., Więcław-Solny L., Tatarczuk A., Wilk A., Śpiewak D., 2012. Badania laboratoryjne procesu absorpcji CO2 z zastosowaniem 30% roztworu monoetanoloaminy. Arch. Spalania, 12, 195–203.
- 12. Lajnert R., Latkowska B., 2013. Clean coal technologies center in Zabrze – possibilities of technological research. Przem. Chem., 92, 215–221.
- 13. Mangalapally H.P., Hasse H., 2011. Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia, 4, 1–8. DOI: 10.1016/j.egypro.2011.01.015.
- 14. Niegodajew P., Asendrych D., Drobniak S., 2013, Numerical analysis of CO2 capture efficiency in post combustion CCS technology in terms of varying flow conditions. Arch. Thermodyn., 34, 123–136. DOI:10.2478/aoter-2013-0033.
- 15. Sander M.T., Mariz C.L., 1992. The Fluor Daniel® econamine FG process: Past experience and present day focus. Energy Convers. Manag., 33, 341–348. DOI: 10.1016/0196-8904(92)90029-V.
- 16. Svensson H., Hulteberg C., Karlsson H.T., 2013. Heat of absorption of CO2 in aqueous solutions of Nmethyldiethanolamine and piperazine. Int. J. Greenh. Gas Control, 17, 89–98. DOI: 10.1016/j.ijggc.2013.04.021.
- 17. Szczypiński T., Tatarczuk A., Grudnik K., 2013. Optimization of amine-based CO2 capture from flue gas by flowsheet modification. Przem. Chem., 92, 106–110.
- 18. Vaidya P.D., Kenig E.Y., 2007. CO2-Alkanolamine reaction kinetics: A review of recent studies. Chem. Eng. Technol., 30, 1467–1474. DOI: 10.1002/ceat.200700268.
- 19. Więcław-Solny L., Tatarczuk A., Stec M., Krótki A., 2014. Advanced CO2 capture pilot plant at Tauron’s coalfired power plant: initial results and further opportunities. Energy Procedia, 63, 6318–6322. DOI: 10.1016/j.egypro.2014.11.664.
- 20. Wilk A., Więcław-Solny L., Krótki A., Śpiewak D., 2013a. Impact of the composition of absorption blend on the efficiency of CO2 removal. Chemik, 67, 399–406.
- 21. Wilk A., Więcław-Solny L., Tatarczuk A., Śpiewak D., Krótki A., 2013b. Effect of composition of absorption solution on carbon dioxide removal efficiency, Przem. Chem., 92, 120–125.
- 22. Wilk A., Więcław-Solny L., Kierzkowska-Pawlak H., Stec M., Śpiewak D., Spietz T., 2014. Effect of the solvent composition on the heat of absorption in the CO2 capture from flue gases. Przem. Chem., 93, 2237–2240. DOI: 10.12916/przemchem.2014.2237.
- 23. Xie Q., Aroonwilas A., Veawab A., 2013. Measurement of heat of CO2 absorption into 2-amino-2-methyl-1-propanol (AMP)/piperazine (PZ) blends using differential reaction calorimeter. Energy Procedia, 37, 826–833. DOI: 10.1016/j.egypro.2013.05.175.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65aaa712-f4b3-4b40-a52d-d9f9298776da