PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State-dependent fractional plasticity model for the true triaxial behaviour of granular soil

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fractional plasticity was proposed to model the stress-strain behaviour of granular soils, but only within the scope of classical triaxial loading condition. In this study an attempt is made to develop a 3D fractional plasticity model for granular soils subjected to true triaxial loads by using characteristic stress, where all the fractional-order and integer-order derivatives can be easily obtained. Without using a plastic potential, the non-associated plastic flow rule is achieved by performing fractional derivatives of the yielding function in the characteristic stress space. The obtained plastic flow direction is found to be influenced by the fractional order, characteristic stress parameter and intermediate stress ratio. To further validate the proposed model, a series of true triaxial test results of different granular soils are simulated, from which good agreement between the model predictions and the corresponding test results is found.
Rocznik
Strony
23--47
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China
autor
  • Institute of Structural Engineering, Poznan University of Technology, Piotrowo 5, 60-965 Poznań, Poland
Bibliografia
  • 1. X. Kong, J. Liu, D. Zou, H. Liu, Stress-dilatancy relationship of Zipingpu gravel under cyclic loading in triaxial stress states, International Journal of Geomechanics, 16, 04016001, 2016.
  • 2. A.S. Suiker, E.T. Selig, R. Frenkel, Static and cyclic triaxial testing of ballast and subballast, Journal of Geotechnical and Geoenvironmental Engineering, 131, 771–782, 2005.
  • 3. Y. Xiao, H. Liu, Y. Chen, J. Jiang, Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure, Journal of Geotechnical and Geoenvironmental Engineering, 140, 04014070, 2014.
  • 4. Z.Y. Yin, C.S. Chang, P.Y. Hicher, M. Karstunen, Micromechanical analysis of kinematic hardening in natural clay, International Journal of Plasticity, 25, 1413–1435, 2009.
  • 5. C. Nouguier-Lehon, Effect of the grain elongation on the behaviour of granular materials in biaxial compression, Comptes Rendus Mécanique, 338, 587–595, 2010.
  • 6. M. Mukherjee, A. Gupta, A. Prashant, Drained instability analysis of sand under biaxial loading using a 3D material model, Computers and Geotechnics, 79, 130–145, 2016.
  • 7. G. Ma, W. Zhou, X.-L. Chang, Modeling the particle breakage of rockfill materials with the cohesive crack model, Computers and Geotechnics, 61, 132–143, 2014.
  • 8. E. Liu, Breakage and deformation mechanisms of crushable granular materials, Computers and Geotechnics, 37, 723–730, 2010.
  • 9. Y. Xiao, H. Liu, J. Zhu, W. Shi, Modeling and behaviours of rockfill materials in three-dimensional stress space, Science China Technological Sciences, 55, 2877–2892, 2012.
  • 10. Y. Lai, M. Liao, K. Hu, A constitutive model of frozen saline sandy soil based on energy dissipation theory, International Journal of Plasticity, 78, 84–113, 2016.
  • 11. Y. Sun, B. Indraratna, J.P. Carter, T. Marchant, S. Nimbalkar, Application of fractional calculus in modelling ballast deformation under cyclic loading, Computers and Geotechnics, 82, 16–30, 2017.
  • 12. M. Pastor, O.C. Zienkiewicz, A.H.C. Chan, Generalized plasticity and the modelling of soil behaviour, International Journal for Numerical and Analitical Methods in Geomechanics, 14, 151–190, 1990.
  • 13. A. Gajo, D. Muir Wood, Severn-Trent sand: a kinematic-hardening constitutive model: the q-p formulation, Géotechnique, 49, 595–614, 1999.
  • 14. Y. Sun, Y. Xiao, Fractional order plasticity model for granular soils subjected to monotonic triaxial compression, International Journal of Solids and Structures, 118–119, 224–234, 2017.
  • 15. X. Li, Y. Dafalias, Dilatancy for cohesionless soils, Géotechnique, 50, 449–460, 2000.
  • 16. V. Bandini, M.R. Coop, The influence of particle breakage on the location of the critical state line of sands, Soils and Foundations, 51, 591–600, 2011.
  • 17. F. Yu, Particle breakage and the critical state of sands, Géotechnique, 67, 713–719, 2017.
  • 18. A.R. Russell, N. Khalili, A bounding surface plasticity model for sands exhibiting particle crushing, Canadian Geotechical Journal, 41, 1179–1192, 2004.
  • 19. Y.P. Yao, H. Yamamoto, N.D. Wang, Constitutive model considering sand crushing, Soils and Foundations, 48, 603–608, 2008.
  • 20. W. Zhou, L. Yang, G. Ma, X. Chang, Y. Cheng, D. Li, Macro–micro responses of crushable granular materials in simulated true triaxial tests, Granular Matter, 17, 497–509, 2015.
  • 21. N. Rodriguez, P. Lade, True triaxial tests on cross-Anisotropic deposits of fine Nevada sand, International Journal of Geomechanics, 13, 779–793, 2013.
  • 22. H.L. Fang, H. Zheng, J. Zheng, Micromechanics-based multimechanism bounding surface model for sands, International Journal of Plasticity, 90, 242–266, 2017.
  • 23. A. Gajo, D. Muir Wood, A kinematic hardening constitutive model for sands: the multiaxial formulation, International Journal for Numerical and Analitical Methods in Geomechanics, 23, 925–965, 1999.
  • 24. H.P. Feigenbaum, Y.F. Dafalias, Directional distortional hardening at large plastic deformations, International Journal of Solids and Structures, 51, 3904–3918, 2014.
  • 25. Y. Xiao, H. Liu, Y. Chen, J. Chu, Influence of intermediate principal stress on the strength and dilatancy behavior of rockfill material, Journal of Geotechnical and Geoenvironmental Engineering, 140, 04014064, 2014.
  • 26. Y.P. Yao, Y.X. Kong, Extended UH Model: three-dimensional unified hardening model for anisotropic clays, Journal of Engineering Mechanics, 138, 853–866, 2012.
  • 27. Y. Yao, N. Wang, Transformed stress method for generalizing soil constitutive models, Journal of Engineering Mechanics, 140, 614–629, 2014.
  • 28. Y.P. Yao, W. Hou, A.N. Zhou, UH model: three-dimensional unified hardening model for overconsolidated clays, Géotechnique, 59, 451–469, 2009.
  • 29. D. Lu, C. Ma, X. Du, L. Jin, Q. Gong, Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept, International Journal of Geomechanics, 17, 04016058, 2016.
  • 30. C. Ma, D. Lu, X. Du, A. Zhou, Developing a 3D elastoplastic constitutive model for soils: A new approach based on characteristic stress, Computers and Geotechnics, 86, 129–140, 2017.
  • 31. N. Khalili, M.A. Habte, S. Valliappan, A bounding surface plasticity model for cyclic loading of granular soils, International Journal for Numerical Methods in Engineering, 63, 1939–1960, 2005.
  • 32. M. Kan, H. Taiebat, N. Khalili, Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials, International Journal of Geomechanics, 14, 239–253, 2014.
  • 33. J.P. Carter, J.R. Booker, C.P. Wroth, A critical state soil model for cyclic loading, G.N. Pande, O.C. Zienkiewicz [eds.], International Symposium on Soils Under Cyclic and Transient Loading, pp. 219–252, John Wiley & Sons Ltd, Swansea, Wales, United Kingdom, 1982.
  • 34. Y. Sun, Y. Shen, Constitutive model of granular soils using fractional order plastic flow rule, International Journal of Geomechanics, 17, 04017025, 2017.
  • 35. D. Lu, J. Liang, X. Du, C. Ma, Z. Gao, Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule, Computers and Geotechnics, 105, 277–290, 2019.
  • 36. W. Sumelka, M. Nowak, Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study, International Journal for Numerical and Analitical Methods in Geomechanics, 40, 651–675, 2016.
  • 37. W. Sumelka, Fractional viscoplasticity, Mechanics Research Communications, 56, 31–36, 2014.
  • 38. W. Sumelka, A note on non-associated Drucker-Prager plastic flow in terms of fractional calculus, Journal of Theoretical and Applied Mechanics, 52, 571–574, 2014.
  • 39. Y. Sun, Y. Gao, Q. Zhu, Fractional order plasticity modelling of state-dependent behaviour of granular soils without using plastic potential, International Journal of Plasticity, 102, 53–69, 2018.
  • 40. Y. Tian, Y.P. Yao, Modelling the non-coaxiality of soils from the view of cross-anisotropy, Computers and Geotechnics, 86, 219–229, 2017.
  • 41. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, California, 1998.
  • 42. K. Been, M.G. Jefferies, A state parameter for sands, Géotechnique, 35, 99–112, 1985.
  • 43. Y. Zhang, H. Sun, H.H. Stowell, M. Zayernouri, S.E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos, Solitons and Fractals, 102, 29–46, 2017.
  • 44. B.M. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fractional Calculus and Applied Analysis, 3, 231–248, 2000.
  • 45. K. Ishihara, Liquefaction and flow failure during earthquakes, Geotechnique, 43, 351–451, 1993.
  • 46. R. Wan, P. Guo, A simple constitutive model for granular soils: modified stress-dilatancy approach, Computers and Geotechnics, 22, 109–133, 1998.
  • 47. Z. Wang, Y. Dafalias, X. Li, F. Makdisi, State pressure index for modeling sand behavior, Journal of Geotechnical and Geoenvironmental Engineering, 128, 511–519, 2002.
  • 48. X. Li, Y. Wang, Linear representation of steady-state line for sand, Journal of Geotechnical and Geoenvironmental Engineering, 124, 1215–1217, 1998.
  • 49. A. Schofield, P. Wroth, Critical state soil mechanics, McGraw-Hill London, New York, USA, 1968.
  • 50. B. Hardin, J.F. Richart, Elastic wave velocities in granular soils, Journal of Soil Mechanics and Foundations Division, ASCE, 89, 33–66, 1963.
  • 51. V.E. Tarasov, On chain rule for fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 30, 1–4, 2016.
  • 52. D.C. Drucker, W. Prager, H.J. Greenberg, Extended limit design theorems for continuous media, Quarterly of Applied Mathematics, 9, 381–389, 1952.
  • 53. R. Verdugo, K. Ishihara, The steady state of sandy soils, Soils and Foundations, 36, 81–91, 1996.
  • 54. H. Matsuoka, T. Nakai, Stress-deformation and strength characteristics of soil under three different principal stresses, Proceedings of the Japan Society of Civil Engineers, 232, 59–70, 1974.
  • 55. Y. Xiao, H. Liu, Y. Sun, H. Liu, Y. Chen, Stress–dilatancy behaviors of coarse granular soils in three-dimensional stress space, Engineering Geology, 195, 104–110, 2015.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65a83d04-f300-45d9-bd37-6ae4d6da20de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.