PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the use of regenerated activated carbons for the adsorption of phenol from a river

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to use regenerated activated carbon to adsorb phenol from a river. Coconut shell activated carbon was derived from used tap water filter cartridges. The activated carbon was carbonised and then activated with KOH at 200°C, under a nitrogen atmosphere. The resulting adsorbent was characterised on the basis of nitrogen adsorption by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) analysis and point of zero charge (pH PZC). The study of periodic adsorption included kinetic and equilibrium modelling, determined the effect of solution pH on efficiency and the possibility of regeneration and reuse of the adsorbent. The efficiency of phenol removal from model water was evaluated, followed by the possibility of their adsorption from a polluted river in Silesia Province. Phenol adsorption followed pseudo-second-order kinetics. The adsorbents showed high adsorption abilities, as determined by the Langmuir isotherm model. The model fits the experimental data well. The concentration of phenol in the river was in the range of 0.45-0.77 mg∙dm-3, which means that its value was at least five times higher than the standard values. The use of regenerated activated carbon from waste filter cartridges removed phenol from the river by 78% using optimal test parameters.
Wydawca
Rocznik
Tom
Strony
93--99
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego St, 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego St, 18, 44-100 Gliwice, Poland
Bibliografia
  • Abdel-Gawwad, H.A. et al. (2023) “Utilization of red clay brick waste in the green preparation of an efficient porous nanocomposite for phenol adsorption: Characterization, experiments and statistical physics treatment,” Sustainable Chemistry and Pharmacy, 32, 101027. Available at: https://doi.org/10.1016/j.scp.2023.101027.
  • Ahmad, M.A., Puad, N.A.A. and Bello, O.S. (2014) “Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by micro-wave-induced KOH activation,” Water Resources and Industry, 6, pp. 18–35. Available at: https://doi.org/10.1016/j.wri.2014.06.002.
  • Cho, E.J. et al. (2022) “Adsorption of phenol on kenaf-derived biochar: Studies on physicochemical and adsorption characteristics and mechanism,” Biomass Conversion and Biorefinery, pp. 1–18. Available at: https://doi.org/10.1007/s13399-022-03262-x.
  • Ciazela, J., Siepak, M. and Wojtowicz, P. (2018) “Tracking heavy metal contamination in a complex river-oxbow lake system: Middle Odra Valley, Germany/Poland,” Science of The Total Environment, 616–617, pp. 996–1006. Available at: https://doi.org/10.1016/j.scitotenv.2017.10.219.
  • Czajkowska, A. (2017) “Kształtowanie się zasięgu stref zalewowych w następstwie obniżeń powierzchni terenu wywołanych prognozowaną eksploatacją węgla kamiennego [Shaping of the flood-plain boundaries following the land area slump caused by the forecasted coal mining exploitation],” Zeszyty Naukowe Uniwersytetu Zielonogórskiego: Inżynieria Środowiska, 167(47), pp. 5–17. Available at: https://zbc.uz.zgora.pl/dlibra/publication/60376/edition/51495/content (Accessed: April 12, 2023).
  • Dehmani, Y. et al. (2022) “Adsorption removal of phenol by oak Wood charcoal activated carbon,” Biomass Conversion and Biorefinery [Preprint]. Available at: https://doi.org/10.1007/s13399-022-03036-5.
  • Dobaradaran, S. et al. (2016) “Biosorption of fluoride from aqueous phase onto Padina sanctae crucis algae: evaluation of biosorption kinetics and isotherms,” Desalination and Water Treatment, 57(58), pp. 28405–28416. Available at: https://doi.org/10.1080/19443994.2016.1182081.
  • Fadlillah, L.N. et al. (2023) “Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia,” Heliyon, 9(4), e15485. Available at: https://doi.org/10.1016/j.heliyon.2023.e15485.
  • Garmia, D., Zaghouane-Boudiaf, H. and Viseras Ibbora, C.V. (2018) “Preparation and characterization of new low cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of 2,4-dichlorophenol from aqueous medium,” International Journal of Biological Macromolecules, 115, pp. 257–265. Available at: https://doi.org/10.1016/j.ijbiomac.2018.04.064.
  • Ghasemi, F.F. et al. (2016a) “Biosorption of Mn (II) from aqueous solution by Sargassum hystrix algae obtained from the Persian Gulf: Biosorption isotherm and kinetic,” International Journal of Pharmacy and Technology, 8(3), pp. 18227–18238.
  • Ghasemi, F.F. et al. (2016b) “Data on Fe (II) biosorption onto Sargassum hystrix algae obtained from the Persian Gulf in Bushehr Port, Iran,” Data in Brief, 9, pp. 823–827. Available at: https://doi.org/10.1016/j.dib.2016.10.018.
  • Guéguen, C. et al. (2004) “Water toxicity and metal contamination assessment of a polluted river: The Upper Vistula River (Poland),” Applied Geochemistry, 19(1), pp. 153–162. Available at: https://doi.org/10.1016/S0883-2927(03)00110-0.
  • He, H. et al. (2023) “Phenol adsorption properties and microstructural changes of organically modified bentonite,” Environmental Geotechnics, pp. 1–10. Available at: https://doi.org/10.1680/jenge.21.00123.
  • Jabłońska-Czapla, M. and Grygoyć, K. (2022) “Selected technology-critical elements as indicators of anthropogenic contamination of surface water and suspended solids on the example of the Biała Przemsza River (Poland),” Chemosphere, 307(2), 135801. Available at: https://doi.org/10.1016/j.chemosphere.2022.135801.
  • Jaskuła, J. and Sojka, M. (2022) “Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland,” Catena, 211, 105959. Available at: https://doi.org/10.1016/j.catena.2021.105959.
  • Kadriu, S. et al. (2021) “Impact of Kishnica mines on pollution of the Graçanka River and water wells nearby, Kosovo,” Journal of Water and Land Development, 48, pp. 16–21. Available at: https://doi.org/10.24425/jwld.2021.136142.
  • Kumar, A. and Jena, H.M. (2016) “Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column,” Journal of Cleaner Production, 137, pp. 1246–1259. Available at: https://doi.org/10.1016/j.jclepro.2016.07.177.
  • Li, H. et al. (2022) “Preparation of waste coffee-grounds carbon and study on phenol adsorption ability,” Journal of Wuhan University of Technology – Materials Science Edition, 37, pp. 38–46. Available at: https://doi.org/10.1007/s11595-022-2497-z.
  • Lua, A.C. (2022) “A comparative study of the pore characteristics and phenol adsorption performance of activated carbons prepared from oil-palm shell wastes by steam and combined steam-chemical activation,” Green Chemical Engineering [Preprint]. Available at: https://doi.org/10.1016/j.gce.2022.11.004.
  • Lütke, S.F. et al. (2019) “Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption,” Journal of Environmental Chemical Engineering, 7(5), 103396. Available at: https://doi.org/10.1016/j.jece.2019.103396.
  • Lv, S. et al. (2020) “A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification,” Applied Surface Science, 510, 145425. Available at: https://doi.org/10.1016/j.apsusc.2020.145425.
  • Marszałek, A. (2022) “Encapsulation of halloysite with sodium alginate and application in the adsorption of copper from rainwater,” Archives of Environmental Protection, 48(1), pp. 75–82. Available at: https://doi.org/10.24425/aep.2022.140546.
  • Marszałek, A., Kamińska, G. and Fathy Abdel Salam, N. (2022) “Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonite-carbon nanotubes composites,” Journal of Water Process Engineering, 46, 102550. Available at: https://doi.org/10.1016/j.jwpe.2021.102550.
  • Mittal, A. et al. (2009) “Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents,” Journal of Colloid and Interface Science, 337(2), pp. 345–354. Available at: https://doi.org/10.1016/j.jcis.2009.05.016.
  • Nádudvari, Á. and Fabiańska, M.J. (2015) “Coal-related sources of organic contamination in sediments and water from the Bierawka River (Poland),” International Journal of Coal Geology, 152(B), pp. 94–109. Available at: https://doi.org/10.1016/j.coal.2015.11.006.
  • Raj, A.R.A. et al. (2023) “Heavy metal pollution of river water and ecofriendly remediation using potent microalgal species,” Water Science and Engineering [Preprint]. Available at: https://doi.org/10.1016/j.wse.2023.04.001.
  • Rozporządzenie (2019) “Rozporządzenie Ministra Gospodarki Morskiej i Żeglugi Śródlądowej z dnia 12 lipca 2019 r. w sprawie substancji szczególnie szkodliwych dla środowiska wodnego oraz warunków, jakie należy spełnić przy wprowadzaniu do wód lub do ziemi ścieków, a także przy odprowadzaniu wód opadowych lub roztopowych do wód lub do urządzeń wodnych [Regulation of the Minister of Maritime Affairs and Inland Navigation of July 12, 2019 on substances particularly harmful to the aquatic environment and conditions to be met when discharging wastewater into waters or into the ground, as well as when discharging rainwater or snowmelt into waters or into water facilities],” Dziennik Ustaw, 2019, 1311.
  • Silva da, M.C.F. et al. (2022) “KOH activated carbons from Brazil nut shell: Preparation, characterization, and their application in phenol adsorption,” Chemical Engineering Research and Design, 187, pp. 387–396. Available at: https://doi.org/10.1016/j.cherd.2022.09.012.
  • Sultana, M. et al. (2022) “A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption,” Cleaner Engineering and Technology, 6, 100382. Available at: https://doi.org/10.1016/j.clet.2021.100382.
  • Talbi, H. and Kachi, S. (2019) “Evaluation of heavy metal contamination in sediments of the Seybouse River, Guelma – Annaba, Algeria,” Journal of Water and Land Development, 40, pp. 81–86. Available at: https://doi.org/10.2478/jwld-2019-0008.
  • Xue, Y. et al. (2023) “Evaluation of water quality pollution and analysis of vertical distribution characteristics of typical rivers in the Pearl River Delta, South China,” Journal of Sea Research, 193, 102380. Available at: https://doi.org/10.1016/j.seares.2023.102380.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65a3013d-b6a9-4274-b09c-fd5356ecee7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.