Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is concerned with a strain gradient theory of elastic materials that have a double porosity structure. Firstly, we present the basic equations and the boundary conditions of the nonlinear theory. Then, we derive the equations of the linear theory and present the constitutive equations for chiral materials. The theory is applied to study the deformation of a chiral cylinder. The materials with a double porosity are of interest in geophysics and in mechanics of bone.
Czasopismo
Rocznik
Tom
Strony
127--142
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
- University of Naples Federico II, Department of Structures for Engineering and Architecture,Via Forno Vecchio 16, 80131, Naples, Italy
Bibliografia
- 1. R.A. Toupin, Elastic materials with couple stresses, Archive for Rational Mechanics and Analysis, 11, 385–414, 1962.
- 2. R.A. Toupin, Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17, 85–112, 1964.
- 3. R.D. Mindlin, Microstructure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 51–77, 1964.
- 4. R.D. Mindlin, N.N. Eshel, On first strain gradient theories in linear elasticity, International Journal for Solids and Structures, 4, 109–124, 1968.
- 5. C. Liebold, W.H. Müller, Applications of strain gradient theories to the size effect In submicro-structures incl. experimental analysis of elastic material parameters, Bulletin of TICMI, 19, 45–55, 2015.
- 6. S.C.Cowin, Bone poroelasticity, Journal of Biomechanics, 32, 217–238, 1999.
- 7. J.G. Berryman, H.F. Wang, Elastic wave propagation and attenuation in a doubleporosity dual-permeability medium, International Journal of Rock Mechanics and Mining Sciences, 37, 63–78, 2000.
- 8. N. Khalili, A.P.S. Selvadurai, A fully coupled constitutive model for thermohydromechanical analysis in elastic media with double porosity, Geophysical Research Letters, 30, 2268, 2003.
- 9. B. Straughan, Stability and uniqueness in double porosity elasticity, International Journal of Engineering Science, 65, 1–8, 2013.
- 10. B.Straughan, Waves and uniqueness in multi-porosity elasticity, Journal of Thermal Stresses, 39, 704–721, 2016.
- 11. M. Svanadze, Potential method in the theory of elasticity for triple porosity materials, Journal of Elasticity, 130, 1–24, 2018.
- 12. R.Lakes, Elastic and viscoelastic behaviour of chiral materials, International Journal of Mechanical Sciences, 43, 1579–1589, 2001.
- 13. C.S. Ha, M.E. Plesha, R.S. Lakes, Chiral three dimensional lattices with tunable Poisson’s ratio, Smart Materials Structures, 25, 054005, 2016.
- 14. S.A. Papanicolopulos, Chirality in isotropic linear gradient elasticity, International Journal for Solids and Structures, 48, 745–752, 2011.
- 15. N. Auffray, H. Le Quang, Q.C. Hea, Matrix representations for 3D strain-gradient elasticity, Journal of the Mechanics and Physics of Solids, 57, 1202–1223, 2013.
- 16. M. Poncelet, A.Somera, C. Morel, C. Jailin, N. Auffray, An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading, International Journal for Solids and Structures, 69-70, 195–206, 2015.
- 17. D. Iesan, On the grade consistent theories of micromorphic solids, American Institute of Physics, Conference Proceedings, 1329, 130–149, 2011.
- 18. J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis, 72, 175–201, 1979.
- 19. D. Iesan, R. Quintanilla, On a theory of thermoelastic materials with a double porosity structure, Journal of Thermal Stresses, 37, 1017–1036, 2014.
- 20. A.E. Green, R.S. Rivlin, Multipolar continuum mechanics, Archive for Rational Mechanics and Analysis, 17, 113–147, 1964.
- 21. S. De Cicco, D. Iesan, Thermal effects in anisotropic porous elastic rods, Journal of Thermal Stresses, 36, 364–377, 2013.
- 22. S.De Cicco , F. De Angelis, A plane strain problem in the theory of elastic materials with voids, Mathematics and Mechanics of Solids, 25, 46–59, 2020.
- 23. S. De Cicco, D. Iesan, On the theory of thermoelastic materials with a double porosity structure, Journal of Thermal Stresses, 44 (12), 1514–1533, 2021.
- 24. D. Iesan, Classical and Generalized Models of Elastic Rods, Chapman & Hall/CRC Press, New York, 2009.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65a1009d-96ca-4bf0-8222-174385bcb15d