PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical trapping of the low index of refraction particles by focused vortex beams and two face-to-face focused beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the extended Huygens–Fresnel principle and Rayleigh scattering theory, optical trapping of the low index of refraction particles using a focused Gaussian Schell-model (GSM) non-vortex beam, a focused GSM vortex beam, and two face-to-face focused GSM vortex beams have been studied. The results demonstrate that the focused GSM non-vortex beam cannot capture the low index of refraction particles, however, the focused GSM vortex beam can be a two-dimensional trap of particles in the z-axis, and the transverse gradient force Fgrad,x and the trapping equilibrium region increase as the topological charge m increases. As the focal length f or the refractive index of particles np decreases, the radiation forces increase and the trapping ability also enhances. To trap the low index particles in three-dimensional space, we adopt that the two face-to-face focused GSM vortex beams can be used to construct an optical potential well. The transverse gradient force of two face-to-face focused GSM vortex beams is twice that of a single GSM vortex beam. The limit of the radius for the low index of refraction particles that were stably captured has also been determined. The obtained results provide valuable information for trapping and manipulating the low index of refraction particles using GSM vortex beams, which may be applied in micromanipulation, biotechnology, nanotechnology and so on.
Czasopismo
Rocznik
Strony
447--461
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • Department of Physics, North University of China, Taiyuan 030051, China
  • Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • School of Physics and Optoelectronic Engineering, Xi’dian University, Xi’an 710071, China
autor
  • Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
Bibliografia
  • [1] ASHKIN A., Acceleration and trapping of particles by radiation pressure, Physical Review Letters 24(4), 1970, pp. 156–159, DOI:10.1103/PhysRevLett.24.156.
  • [2] ASHKIN A., Trapping of atoms by resonance radiation pressure, Physical Review Letters 40(12), 1978, pp. 729–732, DOI:10.1103/PhysRevLett.40.729.
  • [3] YAVUZ D.D., KULATUNGA P.B., URBAN E., JOHNSON T.A., PROITE N., HENAGE T., WALKER T.G., SAFFMAN M., Fast ground state manipulation of neutral atoms in microscopic optical traps, Physical Review Letters 96(6), 2006, article 063001, DOI:10.1103/PhysRevLett.96.063001.
  • [4] ZHANG P., LI G., ZHANG T., Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip, Journal of Physics B: Atomic, Molecular and Optical Physics 50(4), 2017, article 045005, DOI:10.1088/1361-6455/aa5518.
  • [5] YANNOPAPAS V., PASPALAKIS E., Electrodynamic multiple-scattering method for the simulation of optical trapping atop periodic metamaterials, Journal of Modern Optics 65(13), 2018, pp. 1507–1514, DOI:10.1080/09500340.2018.1455909.
  • [6] ZHONG M., WEI X., ZHOU J., WANG Z., LI Y., Trapping red blood cells in living animals using optical tweezers, Nature Communications 4(4), 2013, article 1768, DOI:10.1038/ncomms2786.
  • [7] SAMADI A., ZHANG C., CHEN J., REIHANI S.N.S., CHEN Z., Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers, Biomedical Optics Express 6(1), 2015, pp. 112–117, DOI:10.1364/BOE.6.000112.
  • [8] DUAN M., ZHANG C., LI J., Coherence and polarization properties of laser propagating through biological tissues, Journal of Photochemistry and Photobiology B: Biology 172, 2017, pp. 88–94, DOI:10.1016/j.jphotobiol.2017.05.007.
  • [9] TSKHOVREBOVA L., TRINICK J., SLEEP J.A., SIMMONS R.M., Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature 387(6630), 1997, pp. 308–312, DOI:10.1038/387308a0.
  • [10] WANG M.D., YIN H., LANDICK R., GELLES J., BLOCK S.M., Stretching DNA with optical tweezers, Biophysical Journal 72(3), 1997, pp. 1335–1346, DOI:10.1016/S0006-3495(97)78780-0.
  • [11] ZHANG P., ZHANG Z., PRAKASH J., HUANG S., HERNANDEZ D., SALAZAR M., CHRISTODOULIDES D.N., CHEN Z., Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques, Optics Letters 36(8), 2011, pp. 1491–1493, DOI:10.1364/OL.36.001491.
  • [12] CALANDER N., WILLANDER M., Optical trapping of single fluorescent molecules at the detection spots of nanoprobes, Physical Review Letters 89(14), 2002, article 143603, DOI:10.1103/PhysRevLett.89.143603.
  • [13] GU B., PAN Y., RUI G., XU D., ZHAN Q., CUI Y., Polarization evolution characteristics of focused hybridly polarized vector fields, Applied Physics B 117(3), 2014, pp. 915–926, DOI:10.1007/s00340-014-5909-8.
  • [14] SVOBODA K., BLOCK S.M., Optical trapping of metallic Rayleigh particles, Optics Letters 19(13), 1994, pp. 930–932, DOI:10.1364/OL.19.000930.
  • [15] HARADA Y., ASAKURA T., Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Optics Communications 124(5–6), 1996, pp. 529–541, DOI:10.1016/0030-4018(95)00753-9.
  • [16] SHU J., CHEN Z., PU J., Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams, Journal of the Optical Society of America A 30(5), 2013, pp. 916–922, DOI:10.1364/JOSAA.30.000916.
  • [17] GAHAGAN K.T., SWARTZLANDER G.A., Trapping of low-index microparticles in an optical vortex, Journal of the Optical Society of America B 15(2), 1998, pp. 524–534, DOI:10.1364/JOSAB.15.000524.
  • [18] GAHAGAN K.T., SWARTZLANDER G.A., Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap, Journal of the Optical Society of America B 16(4), 1999, pp. 533–537, DOI:10.1364/JOSAB.16.000533.
  • [19] GARCES-CHAVEZ V., MCGLOIN D., MELVILLE H., SIBBETT W., DHOLAKIA K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, Nature 419(6903), 2002, pp. 145–147, DOI:10.1038/nature01007.
  • [20] FAN C., LIU Y., WANG X., CHEN Z., PU J., Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam, Journal of the Optical Society of America A 35(6), 2018, pp. 903–907, DOI:10.1364/JOSAA.35.000903.
  • [21] ZHANG H., LI J., CHENG K., DUAN M., FENG Z., Trapping two types of particles using a focused partially coherent circular edge dislocations beam, Optics & Laser Technology 97, 2017, pp. 191–197, DOI:10.1016/j.optlastec.2017.06.025.
  • [22] DUAN M., ZHANG H., LI J., CHENG K., WANG G., YANG W., Trapping two types of particles using a focused partially coherent modified Bessel–Gaussian beam, Optics and Lasers in Engineering 110, 2018, pp. 308–314, DOI:10.1016/j.optlaseng.2018.06.015.
  • [23] ZHAO C., WANG L., LU X., Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams, Physics Letters A 363(5–6), 2007, pp. 502–506, DOI:10.1016/j.physleta.2006.11.028.
  • [24] XU H., ZHANG W., QU J., HUANG W., Optical trapping Rayleigh dielectric particles with focused partially coherent dark hollow beams, Journal of Modern Optics 62(21), 2015, pp. 1839–1848, DOI:10.1080/09500340.2015.1045947.
  • [25] JIANG Y., CAO Z., SHAO H., ZHENG W., ZENG B., LU X., Trapping two types of particles by modified circular Airy beams, Optics Express 24(16), 2016, pp. 18072–18081, DOI:10.1364/OE.24.018072.
  • [26] ZHANG Y., DING B., SUYAMA T., Trapping two types of particles using a double-ring-shaped radially polarized beam, Physical Review A 81(2), 2010, article 023831, DOI:10.1103/PhysRevA.81.023831.
  • [27] ZHUANG Y., ZHANG Y., DING B., SUYAMA T., Trapping Rayleigh particles using highly focused higher-order radially polarized beams, Optics Communications 284(7), 2011, pp. 1734–1739, DOI:10.1016/j.optcom.2010.12.018.
  • [28] LI M., YAN S., LIANG Y., ZHANG P., YAO B., Spinning of particles in optical double-vortex beams, Journal of Optics 20(2), 2018, article 025401, DOI:10.1088/2040-8986/aaa0e9.
  • [29] MAIR A., VAZIRI A., WEIHS G., ZEILINGER A., Entanglement of the orbital angular momentum states of photons, Nature 412(6844), 2001, pp. 313–316, DOI:10.1038/35085529.
  • [30] YANG Y., DONG Y., ZHAO C., CAI Y., Generation and propagation of an anomalous vortex beam, Optics Letters 38(24), 2013, pp. 5418–5421, DOI:10.1364/OL.38.005418.
  • [31] LI J., ZENG J., Dynamic evolution of coherent vortex dipole in atmospheric turbulence, Optics Communications 383, 2017, pp. 341–348, DOI:10.1016/j.optcom.2016.09.031.
  • [32] LI J., GAO P., CHENG K., DUAN M., Dynamic evolution of circular edge dislocations in free space and atmospheric turbulence, Optics Express 25(3), 2017, pp. 2895–2908, DOI:10.1364/OE.25.002895.
  • [33] QIU C.-W., YANG Y., Vortex generation reaches a new plateau, Science 357(6352), 2017, p. 645, DOI:10.1126/science.aan6359.
  • [34] YANG Y., THIRUNAVUKKARASU G., BABIKER M., YUAN J., Orbital-angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams, Physical Review Letters 119(9), 2017, article 094802, DOI:10.1103/PhysRevLett.119.094802.
  • [35] YANG Y., DONG Y., ZHAO C., LIU Y., CAI Y., Autocorrelation properties of fully coherent beam with and without orbital angular momentum, Optics Express 22(3), 2014, pp. 2925–2932, DOI:10.1364/OE.22.002925.
  • [36] LI J., WANG W., DUAN M., WEI J., Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams, Optics Express 24(18), 2016, pp. 20413–20423, DOI:10.1364/OE.24.020413.
  • [37] DUAN M., WU Y., SU N., Changes of the polarization states of random electromagnetic vortex beams propagating in biological tissues, Optica Applicata 48(2), 2018, pp. 297–309, DOI:10.5277/oa180212.
  • [38] LI J., ZHANG H., LÜ B., Partially coherent vortex beams propagating through slant atmospheric turbulence and coherence vortex evolution, Optics & Laser Technology 42(2), 2010, pp. 428–433, DOI:10.1016/j.optlastec.2009.08.019.
  • [39] VYAS S., SENTHILKUMARAN P., Interferometric optical vortex array generator, Applied Optics 46(15), 2007, pp. 2893–2898, DOI:10.1364/AO.46.002893.
  • [40] VYAS S., SENTHILKUMARAN P., Vortex array generation by interference of spherical waves, Applied Optics 46(32), 2007, pp. 7862–7867, DOI:10.1364/AO.46.007862.
  • [41] ROUX F.S., Paraxial modal analysis technique for optical vortex trajectories, Journal of the Optical Society of America B 20(7), 2003, pp. 1575–1580, DOI:10.1364/JOSAB.20.001575.
  • [42] ROUX F.S., Distribution of angular momentum and vortex morphology in optical beams, Optics Communications 242(1–3), 2004, pp. 45–55, DOI:10.1016/j.optcom.2004.08.006.
  • [43] DIPANKAR A., MARCHIANO R., SAGAUT P., Trajectory of an optical vortex in atmospheric turbulence, Physical Review E 80(4), 2009, article 046609, DOI:10.1103/PhysRevE.80.046609.
  • [44] LI J., LÜ B., Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices, Journal of Optics A: Pure and Applied Optics 11(4), 2009, article 045710, DOI:10.1088/1464-4258/11/4/045710.
  • [45] LI J., LÜ B., Composite coherence vortices in superimposed partially coherent vortex beams and their propagation through atmospheric turbulence, Journal of Optics A: Pure and Applied Optics 11(7), 2009, article 075401, DOI:10.1088/1464-4258/11/7/075401.
  • [46] LI J., ZHANG H., LÜ B., Composite coherence vortices in a radial beam array propagating through atmospheric turbulence along a slant path, Journal of Optics 12(6), 2010, article 065401, DOI:10.1088/2040-8978/12/6/065401.
  • [47] LI J., ZENG J., DUAN M., Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence, Optics Express 23(9), 2015, pp. 11556–11565, DOI:10.1364/OE.23.011556.
  • [48] ZENG J., LI J., Dynamic evolution and classification of coherent vortices in atmospheric turbulence, Optica Applicata 45(3), 2015, pp. 299–308, DOI:10.5277/oa150303.
  • [49] ZAUDERER E., Complex argument Hermite–Gaussian and Laguerre–Gaussian beams, Journal of the Optical Society of America A 3(4), 1986, pp. 465–469, DOI:10.1364/JOSAA.3.000465.
  • [50] QU J., ZHONG Y., CUI Z., CAI Y., Elegant Laguerre–Gaussian beam in a turbulent atmosphere, Optics Communications 283(14), 2010, pp. 2772–2781, DOI:10.1016/j.optcom.2010.03.022.
  • [51] KIMEL I., ELIAS L.R., Relations between Hermite and Laguerre Gaussian modes, IEEE Journal of Quantum Electronics 29(9), 1993, pp. 2562–2567, DOI:10.1109/3.247715.
  • [52] ZAHID M., ZUBAIRY M.S., Directionality of partially coherent Bessel–Gauss beams, Optics Communications 70(5), 1989, pp. 361–364, DOI:10.1016/0030-4018(89)90131-4.
  • [53] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, 2nd Ed., SPIE Press, Bellingham 2005, DOI:10.1117/3.626196.
  • [54] OKAMOTO K., KAWATA S., Radiation force exerted on subwavelength particles near a nanoaperture, Physical Review Letters 83(22), 1999, pp. 4534–4537, DOI:10.1103/PhysRevLett.83.4534.
  • [55] ZHAO C., WANG L., LU X., Radiation forces of highly focused Bessel–Gaussian beams on a dielectric sphere, Optik 119(10), 2008, pp. 477–480, DOI:10.1016/j.ijleo.2006.11.013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65a02153-1b65-4b14-919e-237002efd93e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.