PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure-related properties of explosively welded multi-layer Ti/Al composites after rolling and annealing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The processes of rolling and annealing of explosively welded multi-layered plates significantly affect the functional properties of the composite. In current research, fifteen-layered composite plates were fabricated using a single-shot explosive welding technique. The composites were then rolled up to 72% to reduce layer thickness, followed by annealing at 625 °C for varying times up to 100 h. Microstructure evolution and chemical composition changes were investigated using scanning electron microscopy equipped with energy-dispersive spectroscopy. The mechanical properties of the composite were evaluated by tensile testing, while the strengths of individual layers near the interface were evaluated by micro-hardness measurements. After explosive welding, the wavy interfaces were always formed between the top layers of the composite and the wave parameters decreasing as the bottom layers approach. Due to the rolling process, the thickness of Ti and Al layers decreases, and the waviness of top interfaces disappeared. Simultaneously, the necking and fracture of some Ti layers were observed. During annealing, the thickness of layers with chemical composition corresponding to the Al3Ti phase increased with annealing time. A study of growth kinetic shows that growth is controlled by chemical reaction and diffusion. The results of micro-hardness tests showed that after annealing, a fourfold increase of hardness can be observed in the reaction layers in relation to the Ti, while in relation to Al, the increase of hardness is even 15 times greater.
Rocznik
Strony
art. no. e39, 2023
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30‑059 Krakow, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42‑201 Częstochowa, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30‑059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30‑059 Krakow, Poland
autor
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42‑201 Częstochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42‑201 Częstochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, J.H. Dąbrowskiego 69, 42‑201 Częstochowa, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30‑059 Krakow, Poland
Bibliografia
  • 1. Wiśniewski A. Pancerze-budowa, projektowanie i badania. Warszawa: WNT; 2001. (in polish).
  • 2. Gooch W, Burkins M, Squillacioti R, Koch RMS, Oscarsson H, Nash C. Ballistic testing of Swedish steel ARMOX Plate for US armor applications 21st Int Symp Ballist, Adelaide. South Australia. 2004;19:23.
  • 3. Borvik T, Dey S, Clausen AH. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. Int J Impact Eng. 2009. https://doi.org/10.1016/j.ijimp eng.2008.12.003.
  • 4. Boccaccini AR, Atiq S, Boccaccini DN, Dlouhy I, Kaya C. Fracture behaviour of mullite fibre reinforced-mullite matrix composites under quasi-static and ballistic impact loading. Compos Sci Technol. 2005. https://doi.org/10.1016/j.compscitech.2004.08.002.
  • 5. Odanović Z, Bobić B. 2003 Ballistic protection efficiency of composite ceramics/metal armours. Sci. Rev. http://www.vti.mod.gov.rs/ntp/rad2003/3-03/odan/odan.pdf.
  • 6. Cheeseman BA, Bogetti TA. Ballistic impact into fabric and compliant composite laminates. Compos Struct. 2003. https://doi.org/10.1016/S0263-8223(03)00029-1.
  • 7. Pedersen KO, Borvik T, Hopperstad OS. Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions. Mater Des. 2011. https://doi.org/10.1016/j.matdes.2010.06.029.
  • 8. Wachowski M, Kosturek R, Śniezek L, Mroz S, Stefanik A, Szota P. The effect of post-weld hot-rolling on the properties of explosively welded Mg/Al/Ti multilayer composite. Materials (Basel). 2020. https://doi.org/10.3390/MA13081930.
  • 9. Boroński D, Kotyk M, Maćkowiak P, Śnieżek L. Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Mater Des. 2017. https://doi.org/10.1016/j.matdes.2017.08.008.
  • 10. Godzimirski J, Janiszewski J, Rośkowicz M, Surma Z. Ballistic resistance tests of multi-layer protective panels. Eksploat i Niezawodn. 2015;17:416.
  • 11. Tasdemirci A, Hall IW. Development of novel multilayer materials for impact applications: A combined numerical and experimental approach. Mater Des. 2009. https://doi.org/10.1016/j.matdes.2008.07.054.
  • 12. Płonka B, Remsak K, Rajda M. Badania. 2018 balistyczne demonstratorów opancerzenia dodatkowego. Szybkobieżne Pojazdy Gąsienicowe. (in polish).
  • 13. Li Y, Liu C, Yu H, Zhao F, Wu Z. Numerical simulation of Ti/Al bimetal composite fabricated by explosive welding. Metals (Basel). 2017. https://doi.org/10.3390/met7100407.
  • 14. Kowalski W, Paul H, Petrzak P, Maj Ł, Mania I, Faryna M. Influence of hot pressing on the microstructure of multi-layered Ti/Al composites. Mater: Arch. Metall; 2021. p. 66.
  • 15. Lazurenko DV, Bataev IA, Mali VI, Bataev AA, Maliutina IN, Lozhkin VS, Esikov MA, Jorge AMJ. Explosively welded multi-layer Ti-Al composites: Structure and transformation during heat treatment. Mater Des. 2016. https://doi.org/10.1016/j.matdes.2016.04.037.
  • 16. Lokaj J, Sahul M, Sahul M, Nesvadba P. 2019 Investigation of properties of Cu-Al explosively welded bimetals. High Energy Mater. https://doi.org/10.22211/matwys/0179.
  • 17. Paul H, Lityńska-Dobrzyńska L, Prażmowski M. Microstructure and phase constitution near the interface of explosively welded aluminum/copper plates. Metall: Mater. Trans. A Phys. Metall. Mater. Sci; 2013. https://doi.org/10.1007/s11661-013-1703-1.
  • 18. Chen X, Inao D, Tanaka S, Mori A, Li X, Hokamoto K. Explosive welding of Al alloys and high strength duplex stainless steel by controlling energetic conditions. J Manuf Process. 2020. https://doi.org/10.1016/j.jmapro.2020.09.037.
  • 19. Mroz S, Stradomski G, Dyja H, Galka A. Using the explosive cladding method for production of Mg-Al bimetallic bars. Arch Civ Mech Eng. 2015. https://doi.org/10.1016/j.acme.2014.12.003.
  • 20. Zeng X, Wang Y, Li X, Li X, Zhao T. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate. J Manuf Process. 2019. https://doi.org/10.1016/j.jmapro.2019.07.007.
  • 21. Paul H, Petrzak P, Chulist R, Maj Ł, Mania I, Prażmowski M. Effect of impact loading and heat treatment on microstructure and properties of multi-layered AZ31/AA1050 plates fabricated by single-shot explosive welding. Mater Des. 2022. https://doi.org/10.1016/j.matdes.2022.110411.
  • 22. Dyja H, Mroz S, Stradomski Z. Properties of joint in the bimetallic rods Cu-Al and Cu-steel after explosive cladding and the process of rolling. Metalurgija. 2003;42:185-91.
  • 23. Andreevskikh LA, Drozdov AA, Mikhailov AL, Samarokov YM, Skachkov OA, Deribas AA. Producing bimetallic steel-copper composites by explosive welding. Steel Transl. 2015. https://doi.org/10.3103/S0967091215010027.
  • 24. Paul H, Chulist R, Lityńska-Dobrzyńska L, Prażmowski M, Faryna M, Mania I, Szulc Z, Miszczyk MM, Kurek A. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer. Mater Des. 2021. https://doi.org/10.1016/j.matdes.2021.109873.
  • 25. Bataev IA, Bataev AA, Mali VI, Pavliukova DV. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing. Mater Des. 2012. https://doi.org/10.1016/j.matdes.2011.09.030.
  • 26. Paul H, Maj Ł, Prazmowski M, Gałka A, Miszczyk M, Petrzak P. Microstructure and mechanical properties of multi-layered Al/Ti composites produced by explosive welding. Procedia Manuf. 2018. https://doi.org/10.1016/j.promfg.2018.07.343.
  • 27. Zhang H, Zhang N, Jia Q, Li D. Calculation and experimentation on the formation sequence of compounds at Al/Ti interface in pure Al antioxidant coatings. Mater Today Commun. 2020. https://doi.org/10.1016/j.mtcomm.2020.101192.
  • 28. Stoloff SN, Sikka V. Phisical metallurgy and processing of intermetalic compounds. New York: Springer; 2012.
  • 29. Petrzak P, Mania I, Paul H, Maj L, Galka A. The kinetic of Al3Ti phase growth in explosively welded multilayered Al/Ti clads during annealing under load conditions. Mater: Arch. Metall; 2019. p. 1549.
  • 30. Assari AM, Eghbali B. Microstructure and kinetics of intermetallic phase formation during solid state diffusion bonding in bimetal Ti/Al. Phys Met Metallogr. 2019. https://doi. org/10.1134/S0031918X19030025.
  • 31. Fronczek DM, Chulist R, Litynska-Dobrzynska L, Szulc Z, Zieba P, Wojewoda-Budka J. Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints. J Mater Eng Perform. 2016. https://doi.org/10.1007/s11665-016-1978-7.
  • 32. Xu L, Cui YY, Hao YL, Yang R. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mater Sci Eng A. 2006. https://doi.org/10.1016/j.msea.2006.07.077.
  • 33. Loo FJJ, Rieck GD. Diffusion in the titanium-aluminium system-I Interdiff Solid Al Ti Or Ti-Al Alloys. Acta Metall. 1973. https:// doi.org/10.1016/0001-6160(73)90220-4.
  • 34. Fronczek DM, Wierzbicka-Miernik A, Saksl K, Miernik K, Chulist R, Kalita D, Szulc Z, Wojewoda-Budka J. The intermetallics growth at the interface of explosively welded A1050/Ti gr 2/A1050 clads in relation to the explosive material. Arch: Civ. Mech. Eng; 2018. https://doi.org/10.1016/j.acme.2018.07.007.
  • 35. Dybkov VI. Reaction diffusion and solid state chemical kinetics. Baech: Trans Tech Publications Ltd; 2010.
  • 36. Foadian F, Soltanieh M, Adeli M, Etminanbakhsh M. A study on the formation of intermetallics during the heat treatment of explosively welded Al-Ti multilayers. Metall: Mater. Trans. A Phys. Metall. Mater. Sci; 2014. https://doi.org/10.1007/s11661-013-2144-6.
  • 37. Assari AH, Eghbali B. Solid state diffusion bonding characteristics at the interfaces of Ti and Al layers. J Alloys Compd. 2019. https://doi.org/10.1016/j.jallcom.2018.09.253.
  • 38. Foadian F, Soltanieh M, Adeli M, Etminanbakhsh M. The formation of TiAl3 during heat treatment in explosively welded Ti-Al multilayers. Iran J Mater Sci Eng. 2014;11:12-9.
  • 39. Fronczek DM, Chulist R, Szulc Z, Wojewoda-Budka J. Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads. Mater Lett. 2017. https://doi.org/10.1016/j.matlet.2017.04.025.
  • 40. Thiyaneshwaran N, Sivaprasad K, Ravisankar B. Characterization based analysis on TiAl3 intermetallic phase layer growth phenomenon and kinetics in diffusion bonded Ti/TiAl3/Al laminates. Mater Charact. 2021. https://doi.org/10.1016/j.match ar.2021.110981.
  • 41. Hu H, Wu X, Wang R, Jia Z, Li W, Liu Q. Structural stability, mechanical properties and stacking fault energies of TiAl3 alloyed with Zn, Cu, Ag: first-principles study. J Alloys Compd. 2016. https://doi.org/10.1016/j.jallcom.2016.01.106.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6599deb7-5bb3-4dd0-b477-c908e169bef9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.