PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intensification of heat transfer between heat exchange surfaces at low RE values

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This contribution deals with the heat transfer parameters and pressure losses in heat exchange sets with six geometrical arrangements at low Re values (Re from 476 to 2926). Geometrical arrangements were characterised by the h/H ratio ranging from 0.2 to 1.0. The experiments used the holographic interferometry method in real time. This method enables visible and quantitative evaluations of images of temperature fields in the examined heat exchange. These images are used to determine the local and mean heat transfer parameters. The obtained data were used to determine the Colburn j-factor and the friction coefficient f. The measured values show that by using the profiled heat exchange surfaces and inserting regulating tubes, an intensification of heat transfer (increase of Num, and/or j) was achieved. However, pressure losses recorded a significant increase (increase of f).
Rocznik
Strony
331--344
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Technical University in Zvolen, Faculty of Environmental and Manufacturing Technology, Department of Environmental and Technology, Studentska 26, 960 53 Zvolen, Slovakia
  • Technical University in Zvolen, Faculty of Environmental and Manufacturing Technology, Department of Environmental and Technology, Studentska 26, 960 53 Zvolen, Slovakia
autor
  • Technical University in Zvolen, Faculty of Environmental and Manufacturing Technology, Department of Environmental and Technology, Studentska 26, 960 53 Zvolen, Slovakia
Bibliografia
  • 1. Beketova A.K., Belozerov A.F., Berezkin A.N., 1979. Golograficheskaya interfrometriya fazovykh ob´ektov/Holografická interferometria fázových objektov. Izdateľstvo Nauka (in Russian).
  • 2. Cernecky J., Koniar J., Brodnianska Z., 2012. Možnosti optimalizácie tvaru teplovýmenných plôch výmenníkov tepla s využitím experimentálnych metód a fyzikálneho modelovania. Vedecká monografia. Zvolen: Vydavateľstvo TU vo Zvolene (in Slovak).
  • 3. Cernecky J., Pivarciova E., 2006. Possibilities and prospects of holography. Russia: Izhevsk State Technical University.
  • 4. Elshafei E.A.M., Awad M.M., Negiry E., Ali A.G., 2010. Heat transfer and pressure drop in corrugated channels. Energy, 35, 101-110. DOI: 10.1016/j.energy.2009.08.031.
  • 5. Hartmann A., Lucic A., 2001. Application of the holographic interferometry in transport phenomena studies. Heat Mass Transfer, 37, 549 – 562. DOI: 10.1007/s002310100237.
  • 6. Hauf W., Grigull V., 1970. Optical methods in heat transfer, advances in heat transfer. London, Academie Press.
  • 7. Herman C., Kang E., 2001. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel. Heat Mass Transfer, 37, 87-99. DOI: 10.1007/s002310000101.
  • 8. Herman C., Kang E., 2002. Heat transfer enhancement in a grooved channel with curved vanes. Int. J. Heat Mass Transfer, 45, 3741-3757. DOI: 10.1016/S0017-9310(02)00092-3.
  • 9. Hwang S.D., Jang I.H., Cho H.H., 2006. Experimental study on flow and local heat/mass transfer characteristics inside corrugated duct. Int. J. Heat Fluid Flow, 27, 21-32. DOI: 10.1016/j.ijheatfluidflow.2005.07.001.
  • 10. Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E., 2010. Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Int. J. Heat Mass Transfer, 53, 178–197. DOI: 10.1016/j.ijheatmasstransfer.2009.09.042.
  • 11. Islamoglu Y., Parmaksizoglu C., 2003. The effect of channel height on the enhanced heat transfer characteristics in a corrugated heat exchanger channel. Appl. Therm. Eng., 23, 979-987. DOI: 10.1016/S1359-4311(03)00029-2.
  • 12. Kilicaslan I., Sarac H.I., 1998. Enhancement of heat transfer in compact heat exchanger by different type of rib with holographic interferometry. Exp. Therm. Fluid Sci., 17, 339-346. DOI: 10.1016/S0894-1777(98)00006-5.
  • 13. Lenhard R., Jandacka J., Malcho M., 2009. Influence of distance and height ribs on boundary layer in to the passive roof cooling convector. Acta Metall. Slovaca, 15, 168-173.
  • 14. Manickam S., Dhir V., 2012. Holographic interferometric study of heat transfer to a sliding vapor bubble. Int. J. Heat Mass Transf., 55, 925 – 940. DOI: 10.1016/j.ijheatmasstransfer.2011.10.016.
  • 15. Martynenko O.G., Khramtsov P.P., 2005. Free-convective heat transfer. Springer Verlag, Berlin.
  • 16. Mayinger F., Feldmann O., 2000. Optical measurements, techniques and applications, heat and mass transfer. Springer, Berlin, Germany.
  • 17. Naylor D., 2003. Recent developments in the measurement of convective heat transfer rates by laser interferometry. Int. J. Heat Fluid Flow, 24, 345-355. DOI: 10.1016/S0142-727X(03)00021-3.
  • 18. Pavelek, M., Janotkova, E., Stetina, J., 2007. Vizualizační a optické měřicí metody. 2nd edition. Vysoké učení technické v Brně, Brno (in Czech).
  • 19. Piepiorka-Stepuk J., Jakubowski M., 2013. Numerical studies of fluid flow in flat, narrow-gap channels simulating plate heat exchanger. Chem. Process Eng., 34, 507–514. DOI: 10.2478/cpe-2013-0041.
  • 20. Sajith V., Haridas D., Sobhan C.B., Reddy G.R.C., 2010. Convective heat transfer studies in macro and mini channels using digital interferometry. Int. J. Therm. Sci., 50, 239-249. DOI: 10.1016/j.ijthermalsci.2010.04.005.
  • 21. Silaci J., Cernecky J., 2007. Manuál ku softvéru Vibra 2a pre vyhodnocovanie holografických interferogramov. Technická univerzita vo Zvolene, Zvolen, Slovenská Republika (in Slovak).
  • 22. Tauscher R., Mayinger F., 1999. Visualization of flow temperature fields by holographic interferometry – Optimization of compact heat exchangers. 2nd Pacific Symposium on Flow Visualization and Image Processing. Honolulu, USA, 16-19 May 1999.
  • 23. Vest Ch.M., 1979. Holographic interferometry. New York, John Wiley.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6595c991-5207-4e55-9c55-3f581c8f31bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.