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Abstract. We investigate the existence and multiplicity of positive stationary solutions for
a certain class of convection-diffusion equations in exterior domains. This problem leads to
the following elliptic equation

∆u(x) + f(x, u(x)) + g(x)x · ∇u(x) = 0,

for x ∈ ΩR = {x ∈ Rn, ∥x∥ > R}, n > 2. The goal of this paper is to show that our problem
possesses an uncountable number of nondecreasing sequences of minimal solutions with finite
energy in a neighborhood of infinity. We also prove that each of these sequences generates
another solution of the problem. The case when f(x, ·) may be negative at the origin, so-called
semipositone problem, is also considered. Our results are based on a certain iteration schema
in which we apply the sub and supersolution method developed by Noussair and Swanson.
The approach allows us to consider superlinear problems with convection terms containing
functional coefficient g without radial symmetry.

Keywords: semipositone problems, positive stationary solutions, minimal solutions with
finite energy, sub and supersolutions methods.
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1. INTRODUCTION

The main purpose of this paper is to formulate sufficient conditions which guarantee
the existence of a large number of positive solutions of the semilinear elliptic equation

∆u(x) + f(x, u(x)) + g(x)x · ∇u(x) = 0, for x ∈ ΩR, (1.1)

where n > 2, R > 1, ΩR = {x ∈ Rn, ∥x∥ > R}, in the case when a sign of f is not
fixed. We discuss solutions decaying in a certain neighborhood of infinity, namely

lim
∥x∥→∞

u(x) = 0. (1.2)
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In the literature such solutions are often called evanescent solutions. The lack of
a boundary condition on ∂Ω allows us to expect the existence of many solutions.

Let us note that such problems naturally arise when we search for positive stationary
solutions for the below convection-diffusion equation

∂u

∂t
= ∆u+ f(x, u) + g(x)x · ∇u. (1.3)

Equations like (1.3) appear in models associated with many physical phenomena such
as problems concerning fluid flows in chemical reactors [1], water pollution [30], oil
extraction from underground reservoirs [16] or convection of heat transport for the
large number of Pèclet [21] (see also, e.g., [20, 24]).
Problem (1.1)–(1.2) was formulated by Constantin in the 90s (see, e.g., [4–6]). The
author considered (1.1) with radial g and proved the existence of at least one positive
solution for (1.1)–(1.2) in Ω

R̃
, for some R̃ ≥ R. Constantin’s results (see, e.g., [4, 5])

were devoted to the case when there exist Q > 0, ã ∈ C(R+,R+) and a nonincreasing
function w : R+ → R+ such that

0 ≤ f(x, u) ≤ Qã(∥x∥)w(|u|) for x ∈ Rn and u ∈ R.

In [4], it was assumed additionally that w(s) > 0 for s > 0,
∫ ∞

1
ds

w(s) = +∞, g was
bounded and the following condition took place

+∞∫

0

r[ã(r) + |g(r)|]dr < +∞. (1.4)

In 2005, Constantin published the paper [6] where the assumptions on w were simplified
to w ∈ C1(R+,R+) and w(0) = 0. One year later, Ehrnström [12] obtained similar
result neglecting (1.4) for nonnegative g. In [9] and [15], Djebali et al. and Ehrnström
and Mustafa proved the existence results for evanescent solutions of (1.1)–(1.2) without
the conditions associated with the integrability of ã. The case of radial nonlinearity
was discussed, among others, in [13] and [15]. The authors showed that if f depended
radially on its first argument and f was nonincreasing with respect to the second
variable, boundary conditions made the unique solution radial. Further results devoted
to such problems can be found also in [33], where the nonlinearity f was positive and
estimated by a radial function f̃(r, u) nondecreasing in u.

In more recent papers [10] and [11], the authors relaxed the assumptions concerning
the growth of the nonlinearity f with respect to the second variable and described
more precisely the speed of vanishing of solutions of (1.1)–(1.2). In the above papers,
g is a radial function. Moreover, many of these results are based on the assumptions
concerning the sublinear growth of f(x, ·) at zero and the fact that f(x, 0) is nonnegative
for x ∈ R with the norm ∥x∥ sufficiently large. The latter condition plays the crucial
role, especially in papers based on the sub- and supersolution methods, because it
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gives the trivial subsolution. The results concerning the case when the nonlinearity
f(x, ·) may change its sign at zero and (1.4) is omitted can be found in Deng’s papers
devoted to the same problem (see [7] and [8]). To obtain the existence of positive
solutions the author had to assume some sophisticated integral inequalities which
allowed him to construct sub- and supersolution of the problem with g being a radial
function.

The sign conditions on f and g were relaxed also in [14], where the author assumed
either that f(x, u) ≥ 0 for u ≥ 0 or that f(x, 0) = 0. However, both conditions allow
us to consider zero as a subsolution. Moreover, in [14], g has to be radial.

Similar problems with g ≡ 0 appear, among others, in combustion theory (see,
e.g., [18]) and are widely discussed in the literature (see, e.g., [2, 23, 31] and references
therein). In those papers the authors deal with nonlinearities f which are also negative
at the origin. Such problems are known in the literature as semipositone problems.
The investigation of the existence of positive solutions to semipositone problems is
considerably more challenging than in the case f(·, 0) > 0, namely positone problems
(see, e.g., [2, 22] and references therein).

The positone case of (1.1)–(1.2) was discussed in the recent papers [28] and [29].
It is worth emphasizing that assumption f(·, 0) ≥ 0 makes the problem much easier,
because it enables us to use the trivial function as a subsolution of our problem. In the
case discussed in this paper we have to choose a subsolution from positive functions.

The main contribution of this paper is the method which allows us to neglect
assumptions concerning the sign of nonlinearities. The novelty is the possibility of
employing the same approach to positone (f(x, 0) > 0) as well as semipositone
(f(x, 0) < 0) problems. Moreover, in our investigation f (·, 0) may also change its sign.
Therefore, we obtain the existence of uncountable set of minimal solutions with finite
energy for a wide class of problems with f being superlinear at the origin. We want to
emphasize that our results cover the case when nonlinearity f(x, ·) does not need to
satisfy any growth conditions at infinity. We have to control only the behavior of f(x, ·)
in a certain neighborhood of zero. In particular, we can investigate the generalized
superlinear Lane–Emden–Fowler equation in a certain exterior domain.

As in many of papers mentioned above, we employ the sub- and supersolution
method presented by Noussair and Swanson in [25]. Therefore, for reader’s convenience,
we recall the most important elements of Noussair and Swanson’s results. We start
with definitions of a solution, a subsolution and a supersolution for the following PDE

Lu ≡
n∑

i,j=1
ai,j(x) ∂2

∂xi∂xj
u = F (x, u,∇u), x ∈ ΩA. (1.5)

We say that u is a solution of (1.5) in ΩA if u ∈ C2+α(M) for every bounded domain
M ⊂ ΩA, and u satisfies (1.5) at every point x ∈ ΩA. As a subsolution of (1.5)
we understand a function w satisfying Lw ≥ F (x,w,∇w), and as a supersolution –
a function v satisfying Lv ≤ F (x, v,∇v).
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Noussair and Swanson proved the following theorem (see [25]):
Theorem 1.1. Assume that aij ∈ C2+α(M), the matrix [aij(x)]i,j is uni-
formly positive definite in every bounded domain M ⊂ ΩA, where A > 0,
α ∈ (0, 1), F ∈ Cα(M × J × N) for all bounded domains M ⊂ ΩA, N ⊂ Rn

and bounded interval J ⊂ R and moreover, for every bounded subdomain
M of ΩA, there exists a nonnegative continuous function gM such that
|F (x, u, p)| ≤ gM (|u|)

(
1 + |p|2

)
for all x ∈ M , u ∈ R, p ∈ Rn (Nagumo condition). If

there exist a nonnegative subsolution w of (1.5) and a positive supersolution v of (1.5)
such that w(x) ≤ v(x) for x ∈ ΩA then there exists a solution u of (1.5) in ΩA such
that w(x) ≤ u(x) ≤ v(x) for all x ∈ ΩA. Moreover, u(x) = v(x) for all x ∈ Rn such
that ∥x∥ = A.

In our case, w is a subsolution of (1.1)–(1.2) when w satisfies (1.2) and

∆w(x) + f(x,w(x)) + g(x)x · ∇w(x) ≥ 0

and v is a supersolution of (1.1)–(1.2) when v satisfies (1.2) and

∆v(x) + f(x, v(x)) + g(x)x · ∇v(x) ≤ 0.

Let us recall also the definitions of minimal solutions and solutions with finite
energy in a neighborhood of infinity (see, e.g., [26, 27]).

As a minimal solution we understand a positive solution u to our problem for which
the following function x 7→ ∥x∥n−2u(x) is bounded above and below by a positive
constant in a certain exterior domain.

We say that a positive solution u is a finite energy solution (or u is a solution
with finite energy) in a neighborhood of infinity when there exists a nonnegative
radial function ψ ∈ C1 (ΩR) with ψ(x) ≡ 1 for ∥x∥ sufficiently large and such that
ψu ∈ D1,2

0 (ΩR), where D1,2
0 (ΩR) denotes the completion of C∞

0 (ΩR) in the norm
∥φ∥ := ∥∇φ∥L2(ΩR).

Since we cannot consider the trivial function as a subsolution which is associated
with the lack of the assumption concerning the nonnegativity of f(x, 0), we have
to find a positive subsolution u. Next the existence of a positive supersolution u
such that u ≤ u in a certain exterior domain is proved. Then, the Noussair–Swanson
theorem (Theorem 1.1) leads to the existence of a positive solution û of (1.1)–(1.2)
which is squeezed between u and u. Moreover, estimates satisfied by u and u allow
us to infer that û is minimal and has finite energy. In the next part of the paper
we show that a little stronger estimate for f allows us to get the existence of k
positive solutions for our problem in both positone and semipositone cases, where
k ∈ N := {1, 2, . . .}. Precisely, we start our consideration with the construction of k
supersolutions u1, . . . , uk as radial positive solutions of k auxiliary linear boundary
value problems in ΩRi

, i = 1, . . . , k. Moreover, we show that u1(x) < . . . < uk(x) in
ΩR, with R := maxi∈{1,...,k} Ri, namely in the intersection of ΩR1

, . . . ,ΩRk
. Then, the

Noussair–Swanson theorem (Theorem 1.1) is applied k times to obtain the existence of
k positive solutions to (1.1)–(1.2). Here, we want to stress that k can be an arbitrary
positive integer. Thus, the natural questions arise: whether it is possible to construct
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the infinite number of solutions and whether this number is countable only or can be
also uncountable. Let us note that if we apply the above approach in the infinite case
we have the intersection of an infinite number of exterior domains ΩRi

. In general, we
cannot exclude the situation when this intersection is empty. Thus, the main problem is
associated with the fact that we have to guarantee the existence of an infinite number of
supersolutions in the same exterior domain. It appears that for nonlinearities satisfying
some additional conditions concerning the behavior with respect to the independent
variable, we can obtain the existence of an uncountable set of nondecreasing sequences
of positive solutions in the exterior domain with sufficiently large radius. The fact that
Theorem 1.1 guarantees the equality between solution and supersolution on the sphere
∥x∥ = R plays the crucial role in the reasoning concerning the multiplicity. Since
the supersolutions will be constructed explicitly, we get the additional information
concerning the value of our solution on this sphere. Another aim of our discussion is to
investigate more precisely the asymptotics of solutions and their gradients. We apply
these results for a certain class of supelinear nonlinearities which may be negative at
the origin.

Since we are focused on the stationary solutions of convection-diffusion equations
associated with ecology and chemistry mainly, it is natural to treat an unknown
function u as a concentration of a certain substance. Thus we look for positive
solutions. Moreover, taking into account the fact that our solutions vanish at infinity,
we can consider the existence of a threshold value d > 0 which estimates the solutions
from above. Therefore we will investigate solutions in [0, d] range and consequently,
consider the source term f in a proper interval. We obtain these results without the
assumptions concerning the radial symmetry of g. Precisely, our approach is based on
the following assumptions:

(Ag) g : Ω1 → R is C1-function, where Ω1 = {x ∈ Rn, ∥x∥ > 1}, which is nonpositive
in Ωl0 = {x ∈ Rn, ∥x∥ > l0} and

∞∫

1

rn−1 sup
∥x∥=r

|g(x)|dr := a

4 < 1.

(Af) f : Ω1 × R → R is locally Hölder continuous and there exists d > 0 such that

sup
u∈[0,d]

sup
∥x∥=r

f(x, u) ≤ (4 − a)d(n− 2)r−n−1 in [1,+∞). (1.6)

(Af1) There exists c, b, k, l > 0 such that l ≥ n+ 1, k > n+ l − 2 and for all x ∈ Ω1
and u ∈ [0, 1],

f(x, u) ≥ cu

∥x∥l
− b

∥x∥k
.

Remark 1.2. Condition (Af) implies immediately the following inequality
∞∫

1

rn−1 sup
u∈[0,d]

sup
∥x∥=r

f(x, u)dr ≤ (4 − a)(n− 2)d. (1.7)
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Moreover, our approach can be employed in the case when the inequality in (Af) is
replaced by the below condition in the asymptotic form:

lim
d→∞

sup
u∈[0,d]

sup
∥x∥=r

f(x, u)
d

< (4 − a)(n− 2)r−n−1 in [1,+∞).

Since f is continuous, the requirement that f is bounded uniformly in [0, d] by
a function which depends on the norm of x (see (1.6)), is not very restrictive. Thus, it
turns out that our conditions are satisfied by many f being polynomials, rational or
exponential functions with respect to the second variable. Let us emphasize that (Af1)
includes also the cases when f(x, 0) < 0 or f(·, 0) may change its sign. An explicit
example with details is described at the end of this paper.

2. EXISTENCE OF A POSITIVE SOLUTION WITH THE FINITE ENERGY

In this section we show the existence of at least one positive solution of (1.1)–(1.2)
and investigate the asymptotic behavior of this solution and its gradient. Our main
tool is the sub- and supersolution theorem (Theorem 1.1). We start with the following
auxiliary linear problem 




−∆v(x) = M(∥x∥) for x ∈ Ω1,

v(x) = 0 for ∥x∥ = 1,
lim∥x∥→∞ v(x) = 0,

(2.1)

where M : [1,+∞) → (0,+∞) is a certain continuous function. It is a well-known fact
that the investigation of the existence of radial solutions of (2.1) leads, via a suitable
transformation, to the solvability of the following Dirichlet problem with singularity
at the end-point 1 {

−z′′(t) = h(t) in (0, 1),
z(0) = z(1) = 0,

(2.2)

where
h(t) = (n− 2)−2(1 − t)

2n−2
2−n M((1 − t) 1

2−n ).
Precisely, having a solution z of (2.2) we can derive that v(x) = z(1 − ∥x∥2−n) is
a solution of (2.1). Conversely, if v(x) = z(∥x∥), with z : [1,+∞) → R, is a radial
solution of (2.1), then z(t) = z((1− t) 1

2−n ) satisfies (2.2). Now we focus on the solution
of (2.2) and its properties.

Lemma 2.1. If h : (0, 1) → (0,+∞) is a continuous function and
∫ 1

0 h(t)dt ≤ 4d then
there exists a unique positive classical solution z of (2.2), such that z(t) ≤ d in [0, 1]
and z′(t) ≤ 0 for all t ∈ (t, 1), where t ∈ (0, 1) maximizes z. Moreover,

z(t) = O(1 − t) for t → 1−, (2.3)
and

z(t) = o(ϕ(t)) for t → 1− (2.4)
for any function ϕ ∈ C1(0, 1) such that limt→1− ϕ(t) = 0 and limt→1− ϕ′(t) = +∞.
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Proof. We obtain immediately the solution of (2.2) which is given by the following
formula

z(t) =
1∫

0

G(s, t)h(s)ds (2.5)

with Green’s function

G(s, t) :=
{

(1 − t)s for 0 ≤ s ≤ t,

t(1 − s) for t < s ≤ 1.
(2.6)

We also derive that z ∈ C([0, 1]) ∩ C2(0, 1), z(0) = z(1) = 0 and

0 ≤ z(t) ≤ 1
4

1∫

0

h(s)ds ≤ d.

The fact that h is positive in (0, 1) leads to the conclusion that z is strictly concave.
Thus z is positive, attains its global maximum at certain t ∈ (0, 1) and for all t ∈

(
t, 1

)
,

z′(t) < 0.
Taking into account the definition of z, we can apply L’Hospital’s rule, which allows

us to obtain the following chain of assertions

(0,+∞) ∋
1∫

0

sh(s)ds = − lim
t→1−

z′(t) = lim
t→1−

z(t)
(1 − t) ,

consequently,
z(t) = O(1 − t) for t → 1−. (2.7)

Now we take an arbitrary function ϕ ∈ C1(0, 1) satisfying both conditions:
limt→1− ϕ(t) = 0 and limt→1− ϕ′(t) = +∞. Then, by the boundedness of z′, we
infer that limt→1−

z′(t)
ϕ′(t) = 0. In consequence, L’Hospital’s rule gives limt→1−

z(t)
ϕ(t) = 0

and further, (2.4) is proved.

We can formulate the existence theorem covering superlinear problem in positone
as well as semipositone cases.

Theorem 2.2. Let (Ag), (Af) and (Af1) hold. Then problem (1.1)–(1.2) possesses
at least one minimal solution û in Ω

R̂
, for a certain R̂ > 1, such that û ≤ d in Ω

R̂
and

û(x) = o
(
ϕ̃(∥x∥)

)
as ∥x∥ → +∞ (2.8)

for any ϕ̃ ∈ C1(1,+∞) such that limr→+∞ ϕ̃(r) = 0 and limr→+∞ ϕ̃′(r)rn−1 = +∞.
Moreover, û has finite energy in a certain neighborhood of infinity.
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Proof. Step 1 (subsolution). Let us consider the harmonic function of the form
u(x) = α∥x∥2−n with 0 < α ≤ (4−a)d

4(n−2) . To show that u is a subsolution of our
problem in a certain exterior domain we have to note that

∂

∂xi
u(x) = α (2 − n) ∥x∥1−n xi

∥x∥ = α (2 − n) xi

∥x∥n

and further

x · ∇u(x) = −α(n− 2)
n∑

i=1

xi

∥x∥n
xi = −α(n− 2)∥x∥2−n < 0.

Taking into account the fact that g(x) ≤ 0 for all for ∥x∥ > l0, we get

g(x)x · ∇u(x) ≥ 0 in Ωl0 .

Then for all x ∈ Rn with

∥x∥ > R0 := max
{
l0,

(
b

cα

) 1
k−(n+l−2)

}
,

the following chain of inequalities holds

∆u(x) + g(x)x · ∇u(x) + f(x, u(x)) ≥ f(x, u(x)) ≥ cα∥x∥−(n+l−2) − b∥x∥−k ≥ 0,

where the last assertion follows from the choice of R0. This means that u is a subsolution
of (1.1)–(1.2) with R = R0.
Step 2 (supersolution). Let us consider (2.1) with

M(r) := d(n− 2)[(4 − a)r−n−1 + 4g̃(r)],

where g̃(r) := sup∥x∥=r |g(x)|, and note that

h(t) = (n− 2)−2(1 − t)
2n−2
2−n M((1 − t)

1
2−n )

satisfies the assumptions of Lemma 2.1. To this effect it suffices to integrate by
substitution (r = (1 − t) 1

2−n ) which gives what follows
1∫

0

h(t)dt = (4 − a)d
∞∫

1

r−2dr + 4d
∞∫

1

rn−1g̃(r)dr ≤ 4d.

Therefore, owing to Lemma 2.1 we get the existence of the unique solution z of (2.2)
such that z(t) ≤ d in [0, 1], for all t ∈ (t, 1), z′(t) ≤ 0, where t ∈ (0, 1) maximizes z,
and assertions (2.3) and (2.4) hold. Now we derive that u, given by the formula
u(x) = z(1 − ∥x∥2−n), is a positive solution of (2.1). Moreover, the substitution
t = 1 − ∥x∥2−n and the estimate (2.3) implies

u(x) = O
(
∥x∥2−n

)
as ∥x∥ → +∞.
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The above assertion gives the existence of A1 > 0, L1 > 1 such that for all x ∈ Rn,
∥x∥ ≥ L1,

u(x) ≤ A1∥x∥2−n. (2.9)
As a simple consequence of (2.4) we obtain

u(x) = o
(
ϕ̃(∥x∥)

)
as ∥x∥ → +∞ (2.10)

for any ϕ̃ ∈ C1(1,+∞) such that lim
r→+∞

ϕ̃(r) = 0 and lim
r→+∞

ϕ̃′(r)rn−1 = +∞.
Our task is now to show that u(x) = z(1−∥x∥2−n) is a supersolution of (1.1)–(1.2)

in a certain exterior domain. Since z is nonincreasing in (t, 1) as the solution of (2.2)
(see Lemma 2.1), we can take

R :=
(
1 − t

) 1
2−n > 1

and obtain for all x ∈ Rn such that ∥x∥ ≥ R, the following estimate

x · ∇u(x) = z′(1 − ∥x∥2−n)(n− 2)∥x∥2−n ≤ 0

and, on the other hand,

x · ∇u(x) = z′(1 − ∥x∥2−n)(n− 2)∥x∥2−n ≥ −4d(n− 2).

Thus, by (Ag), we obtain for x ∈ Ωmax{R,l0},

g(x)x · ∇u(x) ≤ 4d(n− 2)g̃(∥x∥).

Finally, we get

∆u(x) + f(x, u(x)) + g(x)x · ∇u(x) ≤ ∆u(x) + f(x, u(x)) + 4d(n− 2)g̃(∥x∥)
≤ ∆u(x) + d(n− 2)[(4 − a)∥x∥−n−1 + 4g̃(∥x∥)]
= ∆u(x) +M(∥x∥) = 0.

Hence u is a positive supersolution of (1.1)–(1.2)) in Ωmax{R,l0}.
Step 3 (inequality between subsolution and supersolution). Our task is now to show
that for all x ∈ Ω

R̂

, where

R̂ := max
{
R,R0, 2

1
n−2

}
,

we have u(x) ≤ u(x). To this effect we consider another auxiliary linear problem




−∆v(x) = m∥x∥−2n+2 for x ∈ Ω1,

v(x) = 0 for ∥x∥ = 1,
lim∥x∥→∞ v(x) = 0,

(2.11)

where m = (4 − a)d(n− 2).
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It is easy to check that its solution has the following form

v(x) = 1
2(4 − a)d(n− 2)−1∥x∥2−n(1 − ∥x∥2−n).

Moreover, we have for all x ∈ Ω1,

−∆(u(x) − v(x)) = M(∥x∥) − (4 − a)d (n− 2) ∥x∥−2n+2

≥ 4d(n− 2)g̃(∥x∥) > 0,

u(x) − v(x) = 0 for all ∥x∥ = 1
and

lim
∥x∥→∞

(u(x) − v(x)) = 0.

Thus, the maximum principle leads to the inequality u(x) ≥ v(x) for all x ∈ Ω1.
Finally, we get for all x ∈ Rn, ∥x∥ ≥ R̂,

u(x) ≥ v(x) ≥ 1
4(4 − a)d (n− 2)−1 ∥x∥2−n ≥ u(x).

Finally, we have the required inequality.
Step 4 (minimal solution). In the previous steps we have proved the ex-
istence of a subsolution u and a supersolution u of (1.1)–(1.2) such that
u(x) ≤ u(x) in Ω

R̂

. Thus, the Noussair and Swanson theorem leads to the existence of
at least one solution û of (1.1)–(1.2) such that

u(x) ≤ û(x) ≤ u(x) in Ω
R̂

(2.12)

and
û(x) = u(x) in ∂Ω

R̂
. (2.13)

Let us note that (2.12), together with the definition of u and estimate (2.9), implies
that

α∥x∥2−n ≤ û(x) ≤ A1∥x∥2−n

for all x ∈ Rn such that ∥x∥ ≥ max{L1, R̂}, namely, û is the minimal solution.
(2.8) is a simple consequences of (2.10) and (2.12).
Step 5 (finite energy). Let us consider the positive solution û described in the previous
step. Here we apply the standard approach (see, e.g., [26]) based on the classical
estimates for solutions of elliptic problems ([17, Theorem 6.2]). Let us take x ∈ Ω

R̂

such that ∥x∥ ≥ 2R̂, and consider the ball B(x; r/2) of center x and radius r/2, where
r = ∥x∥. Taking into account the estimates mentioned above, we derive the existence
of C > 0 such that

r

2∥∇û(x)∥ ≤ C

(
∥û∥C(B(x;r/2)) + 3

4r
2∥f∥C(B(x;r/2))

)

≤ C

(
A1 + 3

4(4 − a)d(n− 2)
)
r2−n,
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where a, d are given in (Af), and further we obtain

∥∇û(x)∥ ≤ 2C
(
A1 + 3

4(4 − a)d (n− 2)
)

∥x∥1−n.

The above assertion implies that û has finite energy according to the definition given
in Section 1.

3. EXISTENCE OF AN ARBITRARY NUMBER OF SOLUTIONS

Here we apply the idea concerning the construction of an arbitrary number of solutions
presented, for example, in [28] or [29]. Thus, we have to describe a finite number of
supersolutions in the same exterior domain. The natural question is whether we have
to assume additional conditions. It turns out that it suffices to replace (1.6) by the
stronger inequality. Precisely, (Af) has to be replaced by (Af ′) in the following form:
(Af ′) f : Ω1 × R → R is locally Hölder continuous and there exist d > 0 and

ε ∈ (0, 4 − a) such that

sup
u∈[0,d]

sup
∥x∥=r

f(x, u) < (4 − a− ε)(n− 2)dr−n−1 in [1,+∞). (3.1)

Now we formulate the proposition in which we construct k functions Mi such that
each

hi(t) = (n− 2)−2(1 − t)
2n−2
2−n Mi((1 − t) 1

2−n )
satisfies the assumptions of Lemma 2.1.
Proposition 3.1. Under condition (Af ′), there exist continuous functions
Mi : [1,+∞) → (0,+∞), i = 1, . . . , k, such that for all i = 1, . . . , k − 1,
the following inequalities hold

sup
u∈[0,d]

sup
∥x∥=r

f(x, u) + 4d(n− 2)g̃(r) ≤ Mi(r) < Mi+1(r) (3.2)

for all r ≥ 1 and
∞∫

1

rn−1Mi(r)dr ≤ 4(n− 2)d. (3.3)

Proof. Let us consider c1, c2, , . . . , ck−1, ck ∈ (0, ε] such that c1 < c2 < . . . < ck−1 < ck.
We start the proof with the definition of each function Mi:

Mi(r) := d(n− 2)[(4 − a− ε+ ci)r−n−1 + 4g̃(r)]

for all r ∈ [1,+∞), i = 1, 2, 3, . . . , k. Thus (3.2) holds. Moreover, the following estimate
holds: ∞∫

1

rn−1Mi(r)dr ≤ d(n− 2) [4 − ε+ ci] ≤ 4(n− 2)d.
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Now we consider k auxiliary linear elliptic problems




−∆v(x) = Mi(∥x∥) for x ∈ Ω1,

v(x) = 0 for ∥x∥ = 1,
lim∥x∥→∞ v(x) = 0,

(3.4)

i ∈ {1, . . . , k}, which leads to k independent Dirichlet problems
{

−z′′(t) = hi(t) in (0, 1),
z(0) = z(1) = 0,

(3.5)

i = 1, 2, . . . , k, where

hi(t) = (n− 2)−2(1 − t)
2n−2
2−n Mi((1 − t) 1

2−n ).

For each i = 1, 2, . . . , k, we can apply the approach presented in the pre-
vious section. Thus, we obtain immediately k ordered solutions of (3.5) with
i ∈ {1, . . . , k}, described in the below lemma.

Lemma 3.2. Assume that (Af ′) holds. For each i = 1, . . . , k, there exists a positive
classical solution zi of (3.5), such that 0 ≤ zi(t) ≤ d in [0, 1] and z′

i(t) ≤ 0 for all
t ∈ (ti, 1), where ti ∈ (0, 1) maximizes zi. For all i = 1, . . . , k,

zi(t) = O(1 − t) for t → 1−, (3.6)

and for any function ϕ ∈ C1(0, 1) such that limt→1− ϕ(t) = 0 and lim
t→1−

ϕ′(t) = +∞,
we have

zi(t) = o(ϕ(t)) for t → 1−. (3.7)

Moreover, the solutions are ordered, i.e.

z1(t) < . . . < zi(t) < zi+1(t) < . . . < zk(t). (3.8)

Proof. Applying Proposition 3.1 and Lemma 2.1 for each problem (3.5) we obtain the
existence of solutions z1, . . . , zk satisfying the required estimates. Thus, it suffices to
prove the last part of the theorem, namely chain of inequalities (3.8). To this end, we
use the inequality hi+1(t) > hi(t) between right-hand sides of these problems which
holds for each i = 1, 2, . . . , k − 1. Therefore,

− (zi+1(t) − zi(t))′′ = hi+1(t) − hi(t) > 0

for all t ∈ (0, 1). Taking into account the boundary condition

zi+1(0) = zi(0) = zi+1(1) = zi(1) = 0,

we derive that zi+1(t) − zi(t) > 0 for all t ∈ (0, 1), what we have claimed.
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The above lemma allows us to construct k ordered supersolution in the
same exterior domain. Now we can prove the following result concerning
the multiplicity of minimal solutions with finite energy.

Theorem 3.3. Let (Ag), (Af ′) and (Af1) hold. For each k ∈ N, problem (1.1)–(1.2)
possesses at least k minimal solutions ũi, i = 1, . . . , k, in Ω

R̃
, for a certain R̃ > 1,

having finite energy in a certain neighborhood of infinity and satisfying the following
estimates

ũi ≤ d in Ω
R̃
, (3.9)

and for any ϕ̃ ∈ C1(1,+∞) such that limr→+∞ ϕ̃(r)=0 and limr→+∞ ϕ̃′(r)rn−1 =+∞,

ũi(x) = o
(
ϕ̃(∥x∥)

)
as ∥x∥ → +∞. (3.10)

Moreover,

ũ1(x) ≤ . . . ≤ ũi(x) ≤ ũi+1(x) ≤ . . . ≤ ũk(x) for all x ∈ Ω
R̃

(3.11)

and

ũ1(x) < . . . < ũi(x) < ũi+1(x) < . . . < ũk(x) for all x ∈ ∂Ω
R̃
. (3.12)

Proof. Step 1 (subsolution). As in the proof of Theorem 2.2 we show that the function
u(x) = α∥x∥2−n, with 0 < α ≤ 1

4 (4−a−ε)d(n−2)−1, can be considered as a subsolution
of (1.1).
Step 2 (k supersolutions). Let k be an arbitrary positive integer. Then for each
i = 1, . . . , k, Mi satisfies (3.3). It suffices to apply (3.3) and note that the following
estimate holds:

1∫

0

hi(t)dt = (n− 2)−1
∞∫

1

rn−1Mi(r)dr ≤ 4d.

Now Lemma 3.2 leads to the existence of solution zi of (3.5) such that
z′

i(t) ≤ 0 for all t ∈ (ti, 1) and satisfying (3.6), (3.7) and (3.8). Thus,
the function ui(x) = zi(1 − ∥x∥2−n) is a solution of (3.4). Taking into account
the definition of Mi and applying the same reasoning as in the second step of the proof
of Theorem 2.2, we can show that ui is a supersolution of (1.1)–(1.2) in ΩRi

, where

Ri := max
{(

1 − ti
) 1

2−n , l0

}
> 1.

Thus, we have k supersolutions of (1.1) u1, . . . , uk in the same exterior domain ΩR,
where R := max{R1, . . . , Rk}. Moreover, we obtain also the following estimates:

ui ≤ d in ΩR, (3.13)

ui(x) = O
(
∥x∥2−n

)
as ∥x∥ → +∞ (3.14)
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and
ui(x) = o

(
ϕ̃(∥x∥)

)
as ∥x∥ → +∞ (3.15)

for any ϕ̃ ∈ C1(1,+∞) satisfying conditions limr→+∞ ϕ̃(r) = 0 and
limr→+∞ ϕ̃′(r)rn−1 = +∞. Moreover, by (3.8) we get

u1(x) ≤ . . . ≤ ui(x) ≤ ui+1(x) ≤ . . . ≤ uk(x) for all x ∈ Ωmax{R1,...,Rk}, (3.16)

Step 3 (inequality between subsolution and supersolution). Let us consider (2.11) with
m = (4 − a− ε)d(n− 2). Then, the function

v(x) = 1
2(4 − a− ε)d(n− 2)−1∥x∥2−n(1 − ∥x∥2−n)

is the solution of this problem and further v(x) ≥ u(x) in Ω n−2√2. Moreover, we can
obtain the following estimates for all x ∈ Ω1,

−∆(u1(x) − v(x)) = M1(∥x∥) − (4 − a− ε)d(n− 2)∥x∥−2n+2

≥ d(n− 2)c1∥x∥−2n+2 + 4d(n− 2)g̃(∥x∥) > 0.

Since u1(x) = v(x) = 0 for ∥x∥ = 1 and

lim
∥x∥→∞

u1(x) = 0 = lim
∥x∥→∞

v(x),

the maximum principle leads to the inequality u1(x) ≥ v(x) in Ω1. Finally, for
x ∈ Ω n−2√2 we get

u ≤ v ≤ u.

Step 4 (k solutions). Applying the Noussair and Swanson theorem (Theorem 1.1),
we obtain the existence of a certain positive solution ũ1 of (1.1)–(1.2) in Ω

R̃
, where

R̃ := max{R1, . . . , Rk, R̂}, such that u(x) ≤ ũ1(x) ≤ u1(x) for all x ∈ Ω
R̃

and
ũ1(x) = u1(x) for x ∈ ∂Ω

R̃
. We can treat ũ1as a subsolution to (1.1)–(1.2) and consider

supersolution u2(x). It is clear that ũ1(x) ≤ u1(x) < u2(x) on Ω
R̃

, where the latter
inequality follows from (3.16). The Noussair and Swanson theorem leads to the existence
of the second solution ũ2 of (1.1)–(1.2) in Ω

R̃
, such that ũ1(x) ≤ ũ2(x) ≤ u2(x)

in Ω
R̃

and ũ2(x) = u2(x) in ∂Ω
R̃

. Consequently, we infer that for all x ∈ ∂Ω
R̃

,
ũ1(x) = u1(x) < u2(x) = ũ2(x). Thus, ũ1 and ũ2 are different functions. We can
proceed with this process. Having constructed i− th solution ũi, for i = 1, 2, . . . , k− 1,
we know that ũi ≤ ui < ui+1 in Ω

R̃
. Treating ũi as a subsolution of (1.1)–(1.2) and

applying again the Noussair and Swanson theorem, we derive the existence of ũi+1
satisfying our problem. Moreover, we know that ũi(x) ≤ ũi+1(x) ≤ ui+1(x) in Ω

R̃
and

ũi(x) = ui(x) < ui+1(x) = ũi+1(x) in ∂Ω
R̃

. Finally, we obtain k different minimal
solutions of our problem and state that (3.11) and (3.12) hold. Assertion (3.10) is
a consequence of (3.15).
Step 4 and 5 (estimates). Finally, following the fourth and fifth steps of the proof of
Theorem 2.2, we can prove that each ũi is a minimal solution with finite energy in
a certain neighborhood of infinity.
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4. UNCOUNTABLE SET OF NONDECREASING SEQUENCES
OF POSITIVE SOLUTIONS

In this section we answer the question how to obtain the infinite number of positive
minimal solutions with finite energy and state that they are ordered. Following the
reasoning from the previous section we show that it suffices to guarantee the existence
of infinite number of positive supersolutions in the common exterior domain. Then
the procedure described in the proof of Theorem 3.3 can be employed to obtain the
existence of uncountable number of such solutions. To this end we assume stronger
estimates concerning behavior of f and g with respect to x and add the condition
which guarantees that the radius R is sufficiently large. Precisely, instead of (Af)
(or (Af ′)) and (Ag) we assume (Af ′′) and (Ag′) in the following form:

(Ag’) g : Ω1 → R belongs to C1(Ω1), there exist l0 > 1, a ∈ (0, 4) such that

g(x) ≤ 0 and |g(x)| ≤ a

4∥x∥2−2n for all∥x∥ > l0.

(Af ′′) f : Ω1 × R → R, is locally Hölder continuous and there exist d > 0 and
ε ∈ (0, 4 − a) such that

sup
u∈[0,d]

sup
∥x∥=r

f(x, u) ≤ (4 − a− ε)d(n− 2)r2−2n in [1,+∞) (4.1)

and there exists K > 1 such that

max
{
l0, 2

1
n−2 ,

[
1
2

(
1 −K2−n

)2 1
K2

]− 1
n−2

}
≤ R. (4.2)

For each p ∈ R, k ∈ N, we consider the sequence of uncountable sets of auxiliary
problems 




−∆v(x) = Mp,k(∥x∥) for x ∈ Ω1,

v(x) = 0 for ∥x∥ = 1,
lim∥x∥→∞ v(x) = 0,

(4.3)

where

Mp,k(r) := (n− 2)d
r2n

[
(4 − ε) r2 + ε

(
1 − ep

ep + 1
1
k

)]
.

Now we describe some useful properties of functions Mp,k(r), where p ∈ R and k ∈ N.

Remark 4.1. For all p ∈ R, k ∈ N, we have:

(1) Mp,k(r) > 0 in Ω1,
(2) Mp,k+1(r) > Mp,k(r) in Ω1,
(3)

∫ ∞
1 rn−1Mp,k(r)dr ≤ 4(n− 2)d.
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Proof. The definition of Mp,k gives immediately the first and second properties.
To obtain the third one it suffices to estimate the following integral

∞∫

1

rn−1Mp,k(r)dr =
∞∫

1

rn−1 (n− 2)d
r2n

[
(4 − ε) r2 + ε

(
1 − ep

ep + 1
1
k

)]
dr

≤ (4 − ε) (n− 2)d 1
n− 2 + ε(n− 2)d 1

n
≤ 4 (n− 2) d,

where the last inequality follows from the fact that n ≥ 3.

Now we formulate lemma in which the existence of continua of positive supersolu-
tions of (1.1)–(1.2) in ΩR will be proved, where R satisfies inequality (4.2). It is worth
emphasizing that we obtain all these supersolutions in the same exterior domain. In
this sections, the auxiliary lemma describes supersolutions of our problem, because
their construction in the same exterior domain is much more complicated than in the
finite case.

Lemma 4.2. Suppose that (Ag′), (Af1) and (Af ′′) hold. Then for each k ∈ N, p ∈ R,
problem (1.1)–(1.2) possesses at least one positive supersolution up,k in ΩR, such that
for all p ∈ R, the sequence {up,k}k∈N is increasing. Moreover, for each p ∈ R and
k ∈ N the following estimates hold

up,k(x) = O
(
∥x∥2−n

)
as∥x∥ → +∞ (4.4)

and for all ϕ ∈ C1(1,+∞) such that limr→+∞ ϕ(r) = 0 and lim
r→+∞

ϕ′(r)rn−1 = +∞,

up,k(x) = o (ϕ(∥x∥)) as ∥x∥ → +∞. (4.5)

Proof. Basing ourselves on the reasoning presented in the previous sections, we con-
struct for each k ∈ N and p ∈ R, fixed the positive solution of problem (4.3) in the
following form

up,k(x) = zp,k(1 − ∥x∥2−n),

where

zp,k(t) =
1∫

0

G(s, t)(n− 2)−2 (1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )ds,

and G is given by (2.6). Moreover, we can notice that for all k ∈ N and p ∈ R,

zp,k+1(t) > zp,k(t) for all t ∈ (0, 1) . (4.6)
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Now we show the crucial fact that each zp,k is nonincreasing in (t, 1), where t = 1−R2−n.
Indeed, we can calculate

z′
p,k(t) = 1

(n− 2)2




1∫

t

(1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )ds

−
1∫

0

s (1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )ds




≤ 1
(n− 2)2

[
sup

s∈(0,1)
[(1 − s)

2n−2
2−n Mp,k((1 − s)

1
2−n )](1 − t)

− inf
s∈(0,1−K2−n)

[(1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )]12

(
1 −K2−n

)2
]
.

Since

sup
s∈(0,1)

[(1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )] = sup

l∈[1,+∞)

[
l2n−2Mp,k(l)

]

and

inf
s∈(0,1−K2−n)

[(1 − s)
2n−2
2−n Mp,k((1 − s)

1
2−n )] = inf

l∈[1,K]

[
l2n−2Mp,k(l)

]
,

we obtain

z′
p,k(t) ≤ 1

(n− 2)2

[
sup

l∈[1,+∞)

[
l2n−2Mp,k(l)

]
R2−n

− inf
l∈[1,K]

[
l2n−2Mp,k(l)

] 1
2

(
1 −K2−n

)2
]

≤ 1
2(n− 2)2

(
1 −K2−n

)2
[

sup
l∈[1,+∞)

[
l2n−2Mp,k(l)

] 1
K2 − inf

l∈[1,K]

[
l2n−2Mp,k(l)

]
]

= 1
2(n− 2)2

(
1 −K2−n

)2 (n− 2) d (4 − ε)
[

1
K2 − 1

]
≤ 0.

Taking into account the inequality z′′
p,k < 0 in (0, 1) we get that for all t ∈

(
t, 1

)
,

z′
p,k(t) < 0. As in the finite case, we obtain the estimates for all x ∈ Rn such that

∥x∥ ≥ R,

−4d(n− 2) ≤ x · ∇up,k(x) = z′
p,k(1 − ∥x∥2−n)(n− 2)∥x∥2−n ≤ 0
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and further
(
Mp,k(∥x∥) = (n− 2)d (4 − ε) ∥x∥2−2n + ε(n− 2)d

(
1 − ep

ep+1
1
k

)
∥x∥−2n

)

∆up,k(x) + f(x, up,k(x)) + g(x)x · ∇up,k(x)
≤ ∆up,k(x) + f(x, up,k(x)) + 4d(n− 2)|g(x)|
≤ ∆up,k(x) + (4 − a− ε)d (n− 2) ∥x∥2−2n + d(n− 2)a∥x∥2−2n

= ∆up,k(x) + (4 − ε)d(n− 2)∥x∥2−2n

≤ ∆up,k(x) +Mp,k(∥x∥) = 0.

Finally, we state that each up,k is a positive supersolution of our problem in the same
exterior domain ΩR.

Now we can formulate our main result.
Theorem 4.3. Assume that (Ag′), (Af ′′) and (Af1) hold. Then for each p ∈ R,
problem (1.1)–(1.2) possesses a sequence {up,k}k∈N of minimal solutions with finite
energy which is increasing on ∂ΩR and nondecreasing in ΩR. Each such a sequence
generates another solution up of our problem in ΩR which is also minimal and has
finite energy. Moreover, for each p ∈ R and k ∈ N, the following estimate holds

up,k(x) = o (ϕ(∥x∥)) as ∥x∥ → +∞, i = 1, 2 (4.7)

for all ϕ ∈ C1(1,+∞) such that limr→+∞ ϕ(r) = 0 and limr→+∞ ϕ′(r)rn−1 = +∞.
Proof. Step 1 (nondecreasing sequences of solutions). By Lemma 4.2 we get the un-
countable set of supersolutions {up,k : p ∈ R, k ∈ N}, where each up,k is the unique
radial solution of (4.3). Fix p ∈ R. Let us consider the increasing sequence {up,k}k∈N
of supersolutions of our problem in ΩR. The first task is to investigate the rela-
tions between the supersolution up,1 and the subsolution u(x) = α∥x∥2−n with
0 < α ≤ 1

4 (4 − a − ε)d(n − 2)−1 of (1.1)–(1.2). Let us recall that up,1 satisfies the
problem 




−∆v(x) = Mp,1(∥x∥), for x ∈ Ω1,

v(x) = 0, for ∥x∥ = 1,
lim∥x∥→∞ v(x) = 0,

with
Mp,1(r) = 4(n− 2)d

r2n

[
r2 + n− 3

n− 2

(
1 − ep

ep + 1

)]
.

Now we compare up,1 and v which is the solution of (2.11) with the right-hand side
containing m = (4 − a− ε)d(n− 2) (as in the proof of the previous theorem). Since

Mp,1(r) = (n− 2)d
r2n

[
(4 − ε) r2 + ε

(
1 − ep

ep + 1

)]
>

(4 − ε− a)d(n− 2)
r2n−2 ,

v(x) = 0 = up,1(x) for ∥x∥ = 1 and lim∥x∥→∞ v(x) = 0 = lim∥x∥→∞ up,1, the maximum
principle gives up,1(x) ≥ v(x). Thus, we get for all x ∈ Rn, ∥x∥ ≥ R ≥ 2 1

n−2 ,

u(x) ≤ 1
4(4 − a− ε)d(n− 2)−1∥x∥2−n ≤ v(x) ≤ up,1(x).



Positive stationary solutions of convection-diffusion equations for superlinear sources 745

Now we can apply the same iterative schema as in the proof of Theorem 3.3. Bearing
in mind the above inequality, the Noussair–Swanson theorem leads to the existence of
a solution up,1 for (1.1)–(1.2) in ΩR such that

u(x) ≤ up,1(x) ≤ up,1(x) in ΩR and up,1(x) = up,1(x) in ∂ΩR.

We treat up,1 as a subsolution to (1.1)–(1.2) and consider supersolution up,2. Taking
into account Lemma 4.2, we know that up,1(x) ≤ up,1(x) < up,2(x) in ΩR. The Noussair
and Swanson theorem leads to the existence of a second solution up,2 of (1.1)–(1.2)
in ΩR, such that up,1(x) ≤ up,2(x) ≤ up,2(x) in ΩR and up,2(x) = up,2(x) on ∂ΩR.
Therefore for all x ∈ ∂ΩR, up,1(x) = up,1(x) < up,2(x) = up,2(x). Thus, up,1 and up,2
are not the same. Iterating this procedure we construct the sequence {up,k}k∈N which
is increasing on ∂ΩR and nondecreasing in ΩR.

To sum up, we have proved the existence of uncountable set of nondecreasing
sequences of positive evanescent solutions of (1.1)–(1.2). It is clear that each of them
is minimal and has finite energy.

Step 2 (another uncountable set of solutions). Coming to the last part of the proof
we fix p ∈ R and follow the reasoning presented, e.g., in [25] or [29]. For each j ∈ N,
we consider the annulus

Ωj,R :=
{
x ∈ Rn : R+ 1

2j < ∥x∥ < R+ j

}
.

Taking into account the classical estimate for solutions of elliptic PDE (see, e.g.,
[25, Lemma 3.2]) in bounded domains, we obtain the existence of D > 0 independent
of k such that the following inequality holds

∥up,k∥C2,α(Ωj,R) ≤ D for all j ≥ 1.

Bearing in mind the compactness of the injection C2,α(Ω1,R) → C2(Ω1,R), we derive
that there exists a subsequence {up,kl

}l∈N of {up,k}k∈N converging to a certain element
ũ1

p in the C2(Ω1,R) norm. This implies that ũ1
p is also a solution of (1.1)–(1.2) in Ω1,R.

Since for the subsequence {up,kl
}l∈N the above estimate also holds, there exists

a subsequence of {up,kl
}l∈N which tends in the C2(Ω2,R)-norm to ũ2

p being a solution
of (1.1)–(1.2) in Ω2,R and such that for all x ∈ Ω1,R we have ũ2

p = ũ1
p. This schema can

be iterated, which allows us to construct inductively a sequence {ũj
p}j∈N of solutions

of (1.1)–(1.2) in Ωj,R with the property

ũj+1
p = ũj

p in Ωj,R. (4.8)

Now we define the function up given in the following way

up := ũj
p in Ωj,R for all j ≥ 1.

Equality (4.8) guarantees that up is well-defined. Bearing in mind the construction
of each ũj

p we can state that up satisfies (1.1)–(1.2). Our task is now to show that
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up is sufficiently smooth. Let us consider an arbitrary bounded set M ⊂ ΩR and
j ∈ N such that M ⊂ Ωj,R. The above reasoning applied for Ωj,R allows us to derive
that up ∈ C2(M) and further, the regularity arguments associated with the Schauder
estimates imply that up ∈ C2,α(M). Finally, up ∈ C2,α

loc (ΩR) and satisfies (1.1)–(1.2).
Thus, the set {up, p ∈ R} is uncountable and contains solutions of (1.1)–(1.2). The
properties of up,k lead to the conclusion that up is also minimal and has finite
energy.

5. EXAMPLES AND ADDITIONAL REMARKS

Let us consider the following problem




∆u(x) +
[
cu+A(x)ueB(x)u

]
∥x∥−l − b∥x∥−k

+1
4

2 − ∥x∥
∥x∥6 + 1 + (cosx)2x · ∇u(x) = 0, for x ∈ ΩR,

lim∥x∥→∞ u(x) = 0,

(5.1)

where n = 3, l ≥ 4, k > l + 1, R ≥ 32, b, c > 0, ΩR =
{
x ∈ R3, ∥x∥ > R

}
,

A,B : Ω1 → R are positive, locally Hölder continuous functions with the following
properties

A := sup
x∈ΩR

A(x), B := sup
x∈ΩR

B(x)

and (
c+AeB

)
< 2.

Here we have

g(x) := 1
4

2 − ∥x∥
∥x∥6 + 1 + (cosx)2

and
f(x, u) :=

[
cu+A(x)ueB(x)u

]
∥x∥−l − b∥x∥−k.

We see that for all ∥x∥ > 2, g(x) < 0. It is easy to check that for x ∈ ΩR,

|g(x)| = 1
4

∥x∥ − 2
∥x∥6 + 1 + (cosx1)2 ≤ 1

4∥x∥−5

which guarantees that (Ag′) holds with l0 = 2 and a = 1. It is obvious that f satisfies
(Af1). Now we show that f satisfies also (Af ′′) for d = 1 and ε = 1. To this end we
note that for all x ∈ Rn, such that ∥x∥ > 1 and u ∈ [0, 1], we have

sup
u∈[0,d]

sup
∥x∥=r

f(x, u) ≤
[
c+AeB

]
r−l ≤

(
c+AeB

)
r−4 ≤ (4 − 1 − 1)r−3−1.
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Finally, (Af ′′) holds. Moreover, we derive that u(x) = α∥x∥−1 with 0 < α ≤ 1
2 is

a positive subsolution of (5.1). To sum up, all the assumptions are satisfied. Thus, The-
orem 4.3 leads to the conclusion that there exists an uncountable set of nondecreasing
sequences of positive minimal solutions of (5.1) with finite energy in a neighborhood
of infinity. Moreover, the sequences are increasing on ∂ΩR.

Remark 5.1. It is worth emphasizing that f(x, 0) = − b
∥x∥k < 0. Moreover, our

approach allows us to consider also equations of Lane–Emden–Fowler type and many
other nonlinearities which are superlinear with respect to the second variable. On the
other hand, we have to admit that this method works when the function x 7→ f(x, u)
decreases sufficiently fast as ∥x∥ → ∞ for each u fixed. Such conditions appear in
many papers, see, e.g., [31] and references therein.

Remark 5.2. Let us note that in the case of large n assumption (4.2) is not very
strong. Taking into account the properties of the function

K → jn(K) :=
[

1
2

(
1 −K2−n

)2 1
K2

]− 1
n−2

we get

lim
n→∞

[
1
2

(
1 −K2−n

)2 1
K2

]− 1
n−2

= 1.

Thus, in case when l0 = 1, we can obtain the existence of uncountable number of
nondecreasing sequences in the exterior domain which is “close” to the complement
of the unit ball in Rn.

Proof. The main task is to find a number K for which (4.2) holds.
We are going to choose it as a minimizer of jn(·) in (1,+∞). To this effect,
for given n ∈ N, n ≥ 3, we calculate the derivative

d

dK
jn(K) = K2n +K4n−K4 −K2Knn

( 1
2
) n−1

n−2 K2n+3
(

1
K2 (K2−n − 1)2

) n−1
n−2 (n− 2)

.

We state that Kn = (n− 1) 1
n−2 ∈ (1,+∞) is a stationary point of the function jn(·)

and minimizes jn(·) in (1,+∞). We have to admit that for n small, we can only
consider the exterior domain ΩR := {x ∈ Rn, ∥x∥ > R} with large R (e.g. for n = 3
we have R ≥ 32). However, the final conclusion is that the bigger n the smaller radius
R can be considered, namely when n increases then R gets closer and closer to 1 (e.g.
for n = 6, R ≥ 1.626; for n = 10, R ≥ 1.203; for n = 20, R ≥ 1.065).
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