Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the work was to investigate the possibility of advanced fractionation of plastic waste pyrolytic oil into products corresponding to classic fuels. Typically, fractionation is limited to two-stage condensation. The paper proposes a new approach by using an innovative configuration of the fractionation unit. Due to the similarity of pyrolytic and crude oil chemical composition, advanced fractionation based on crude oil processing methods has been investigated. The ChemCad package was used to model and analyse different pyrolytic oil fractionation strategies. First, the use of a classic two-column oil rectification installation for fractionation of pyrolytic oil was simulated. It was found that a classic installation is not advisable due to the different boiling temperature ranges of both feeds. However, a small addition of pyrolytic oil to crude oil feed, as 10%, does not cause a significant change in the products and is worth further research. Two simplified cases of a modified rectification installation were also proposed. The obtained products were compared to typical crude oil fractions, and regarding boiling temperature ranges and some properties, a great similarity to Naphtha, Kerosene, and Diesel was found. Fractionation in the proposed rectification unit is a promising way for pyrolytic oil processing.
Rocznik
Tom
Strony
art. no. e84
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
- 1. ASTM D3699-19. Standard Specification for Kerosine. DOI: 10.1520/D3699-19.
- 2. ASTM D86-23. Standard test method for distillation of petroleum products and liquid fuels at atmospheric pressure. DOI: 10.1520/D0086-23AE01.
- 3. Bezergianni S., Dimitriadis A., Faussone G.-C., Karonis D., 2017. Alternative diesel from waste plastics. Energies, 10, 1750. DOI: 10.3390/en10111750.
- 4. ChemCycling, 2024. Creating a circular plastics economy with chemical recycling. Available at: https://www.basf.com/global/en/who-we-are/sustainability/we-drive-sustainable-solutions/circular-economy/mass-balance-approach/chemcycling.html.
- 5. EN 590:2022-08. Automotive fuels – Diesel – Requirements and test methods.
- 6. EN ISO 3405:2019. Petroleum and related products from natural or synthetic sources. Determination of distillation characteristics at atmospheric pressure.
- 7. Faisal F., Rasul M.G., Jahirul M.I., Chowdhury A.A., 2023. Waste plastics pyrolytic oil is a source of diesel fuel: a recent review on diesel engine performance, emissions, and combustion characteristic. Sci. Total Environ., 886, 163756. DOI: 10.1016/j.scitotenv.2023.163756.
- 8. Faussone G.C., 2018. Transportation fuel from plastic: two cases of study. Waste Manage., 73, 416–423. DOI: 10.1016/j.wasman.2017.11.027.
- 9. Fulgencio-Medrano L., García-Fernández S., Asueta A., Lopez-Urionabarrenechea A., Perez-Martinez B.B., Arandes J.M., 2022.
- 10. Oil production by pyrolysis of real plastic waste. Polymers, 14,553. DOI: 10.3390/polym14030553.
- 11. Jahirul M.I., Faisal F., Rasul M.G., Schaller D., Khan M.M.K., Dexter R.B., 2022a. Automobile fuels (diesel and petrol) from plastic pyrolysis oil – production and characterisation. Energy Rep:; 8, 730–735. DOI: 10.1016/j.egyr.2022.10.218.
- 12. Jahirul M.I., Rasul M.G., Schaller D., Khan M.M.K., Hasan M.M., Hazrat M.A., 2022b. Transport fuel from waste plastics pyrolysis – a review on technologies, challenges and opportunities. Energ y Convers. Manage., 258, 115451. DOI: 10.1016/j.enconman.2022.115451.
- 13. Kalargaris I., Tian G., Gu S., 2017. Combustion, performance and emission analysis of a DI diesel engine using plastic pyrolysis oil. Fuel Process. Technol., 157, 108–115. DOI: 10.1016/j.fuproc.2016.11.016.
- 14. Krzywda R., Wrzesińska B., 2021. Simulation of the condensation and fractionation unit in waste plastics pyrolysis plant. Waste Biomass Valorization, 12, 91–104. DOI: 10.1007/s12649-020-00994-7.
- 15. Kumar S., Prakash R., Murugan S., Singh R.K., 2013. Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CIengine. Energ y Convers. Manage., 74, 323–331. DOI: 10.1016/j.enconman.2013.05.028.
- 16. Kunwar B., Chandrasekaran S.R., Moser B.R., Deluhery J., Kim P., Rajagopalan N., Sharma B.K., 2017. Catalytic thermal cracking of postconsumer waste plastics to fuels. 2. Pilot-scale thermochemical conversion. Energy Fuels, 31, 2705−2715. DOI: 10.1021/acs.energyfuels.6b02996.
- 17. Maqsood T., Dai J., Zhang Y., Guang M., Li B., 2021. Pyrolysis of plastic species: a review of resources and products. J. Anal. Appl. Pyrol ysis; 159, 105295. DOI: 10.1016/j.jaap.2021.105295.
- 18. Murthy K., Shetty R.J., Shiva K., 2023. Plastic waste conversion to fuel: a review on pyrolysis process and influence of operating parameters. Energy Sources, Part A, 45, 11904–11924. DOI: 10.1080/15567036.2020.1818892.
- 19. Panda A.K., Singh R.K., Mishra D.K., 2010. Thermolysis of waste plastics to liquid fuel: a suitable method for plastic waste management and manufacture of value added products – a world prospective. Renew able Sustainable Energy Rev., 14, 233–248. DOI: 10.1016/j.rser.2009.07.005.
- 20. Pradipta I.Z., Rochmadi, Purnomo C.W., 2019. High grade liquid fuel from plastic waste pyrolysis oil by column distillation. IEEE Conference on Energy Conversion (CENCON), Yogyakarta, Indonesia, 2019, 240–244. DOI: 10.1109/CEN-CON47160.2019.8974811.
- 21. Shishkova I., Stratiev D., Kolev I.V., Nenov S., Nedanovski D., Atanassov K., Ivanov V., Ribagin S., 2022. Challenges in petroleum characterization – a review. Energies, 15, 7765. DOI: 10.3390/en15207765.
- 22. Siddiqui M.N., Redhwi H.H., 2009. Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process. Technol., 90, 545–552. DOI: 10.1016/j.fuproc.2009.01.003.
- 23. Silva A.P., Bahú J.O., Soccol R., Rodríguez-Urrego L., Fajardo-Moreno W.S., Moya H., León-Pulido J., Cárdenas Concha V.O., 2023. Naphtha characterization (PIONA, density, distillation curve and sulfur content): An origin comparison. Energies, 16, 3568. DOI: 10.3390/en16083568.
- 24. Statista Research Department, 2024. Global cumulative production of plastic 1950–2050. Available at: https://www.statista.com/statistics/1019758/plastics-production-volume-worldwide.
- 25. Thahir R., Altway A., Juliastuti S.R., Susianto, 2019. Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Rep:, 5, 70–77. DOI: 10.1016/j.egyr.2018.11.004.
- 26. Thahir R., Irwan M., Alwathan A., Ramli R., 2021. Effect of temperature on the pyrolysis of plastic waste using zeolite ZSM-5 using a refinery distillation bubble cap plate column. Results Eng., 11, 100231. DOI: 10.1016/j.rineng.2021.100231.
- 27. Vijayakumar A., Sebastian J., 2018. Pyrolysis process to produce fuel from different typ of plastic – a review. IOP Conf. Ser.: Mater. Sci. Eng., 396, 012062. DOI: 10.1088/1757-899X/396/1/012062.
- 28. Zeb W., Roosen M., Knockaert P., Janssens S., Withoeck D., Kusenberg M., Hogie J., Billen P., Tavernier S., Van Geem K M., De Meester S., 2023. Purification and characterisation of post-consumer plastic pyrolysis oil fractionated by vacuum distillation. J. Cleaner Prod., 416, 137881. DOI: 10.1016/j.jclepro.2023.137881.
- 29. Zeller M., Netsch N., Richter F., Leibold H., Stapf D., 2021. Chemical recycling of mixed plastic wastes by pyrolysis – pilot scale investigations. Chem. Ing. Tech., 93, 1763–1770. DOI: 10.1002/cite.202100102.
- 30. Zhao D., Wang X., Miller J.B., Huber G.W., 2020. The chemistry and kinetics of polyethylene Pyrolysis: a process to produce fuels and chemicals. ChemSusChem., 13, 1764–1774. DOI: 10.1002/cssc.201903434.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6588f536-c606-4bd7-954a-1d5c69045c0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.