PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical behavior and constitutive model of lining concrete in triaxial compression infiltration process under pore water pressure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground concrete structures are affected by groundwater, the effects of which are different from those of stress environments experienced by ground engineering concrete structures. This study experimentally and theoretically investigates the mechanical behavior, permeability evolution, and deformation failure mechanism of lining concrete under pore water pressure. Results show that an increase in pore water pressure promoted the coupling of seepage and stress fields in concrete. This caused the microcracks to propagate further, which led to a decrease in concrete strength and elastic modulus. Through triaxial compression infiltration, the concrete successively underwent initial compaction, linear elastic deformation, and nonlinear deformation after yielding. Accordingly, its permeability exhibited three trends: gradual decrease, stable development, and a sharp increase. The change in permeability was closely related to the number of pores and the development of microcracks in concrete. The concept of primary pore strain was proposed according to the characteristics of deformation and failure. Moreover, a triaxial compression infiltration constitutive model was derived for concrete based on the principle of effective stress. This model considers the influence of pore water pressure and the initial compaction characteristics. This study can be used to guide the design of lining concrete structures in underground engineering.
Rocznik
Strony
art. no. e20, 2023
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • Institute of Environment‑Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu 241003, China
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
autor
  • State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
autor
  • School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
autor
  • Research Center of Mine Underground Engineering of Ministry of Education, Anhui University of Science and Technology, Huainan 232001, China
Bibliografia
  • 1. Hudoba I. Contribution to static analysis of load-bearing concrete tunnel lining built by shield-driven technology. Tunn Undergr Sp Tech. 1997;12(1):55-8. https://doi.org/10.1016/j.tust.2015.08.008.
  • 2. Bian K, Xiao M, Chen J. Study on coupled seepage and stress fields in the concrete lining of the underground pipe with high water pressure. Tunn Undergr Sp Tech. 2009;24(3):287-95. https://doi.org/10.1016/j.tust.2008.10.003.
  • 3. Wang Y, Jia JS. Experimental study on the influence of hydraulic fracturing on high concrete gravity dams. Eng Struct. 2017;132:508-17. https://doi.org/10.1016/j.engstruct.2016.11.046.
  • 4. Gu CS, Su HZ, Zhou H. Study on coupling model of seepage-field and stress-field for rolled control concrete dam. Appl Math Mech. 2005;26(3):355-63. https://doi.org/10.1007/BF02440086.
  • 5. Li ZL, Du SL. Experimental study on mechanical properties of concrete due to high seepage pore water pressure. Eng Mech. 2011;28(11):72-7. https://doi.org/10.3724/SP.J.1105.2011.09501.
  • 6. Xue WP, Yao ZS, Jing W, Song HQ. Mechanical damage and failure behavior of shaft-lining concrete after exposure to high pore-water pressure. J Mater Civ Eng. 2020;32(1):04019339 (https://orcid.org/0000-0001-8321-5477).
  • 7. Wang W, Lu CF, Yuan GL, Zhang YL. Effects of pore water saturation on the mechanical properties of fly ash concrete. Constr Build Mater. 2016;130:54-63. https://doi.org/10.1016/j.conbuildmat.2016.11.031.
  • 8. Muhaimin AA, Adel M, Nagai K. Investigating the effect of repeated high water pressure on the compressive and bond strength of concrete with/without steel bar. Materials. 2021;14(3):527. https://doi.org/10.3390/ma14030527.
  • 9. Bjerkli L, Jensen J, Lenschow R. Strain development and static compressive strength of concrete exposed to water pressure loading. Struct J. 1993;90(3):310-5. https://doi.org/10.14359/4189.
  • 10. Malecot Y, Zingg L, Briffaut M, Baroth J. Influence of free water on concrete triaxial behavior: the effect of porosity. Cem Concr Res. 2019;120:207-16. https://doi.org/10.1016/j.cemco nres.2019.03.010.
  • 11. Vu XD, Briffaut M, Malecot Y, Daudeville L, Ciree B. Influence of the saturation ratio on concrete behavior under triaxial compressive loading. Sci Technol Nucl Ins. 2015;976387:10. https://doi.org/10.1155/2015/976387.
  • 12. Shakiba M, Darabi MK, Little DN. Effect of pore water pressure on response of asphalt concrete. Transport Res Rec. 2017;2631(1):114-22. https://doi.org/10.3141/2631-13.
  • 13. Saini D, Shafei B. Concrete constitutive models for low velocity impact simulations. Int J Imp Eng. 2019;132: 103329. https://doi.org/10.1016/j.ijimpeng.2019.103329.
  • 14. Moharrami M, Koutromanos I. Triaxial constitutive model for concrete under cyclic loading. J Struct Eng. 2016;142(7):04016039. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001491.
  • 15. Toufigh V, Abyaneh MJ, Jafari K. Study of behavior of concrete under axial and triaxial compression. ACI Mater J. 2017;114(4):619-29. https://doi.org/10.14359/51689716.
  • 16. He ZJ, Ma YN, Wang ZW, Zhang XJ, Zhang XS, Ding MJ, Fu CA. Triaxial strength and deformation characteristics and its constitutive model of high-strength concrete before and after high temperatures. Structures. 2021;30(4):1127-38. https://doi.org/10.1016/j.istruc.2020.11.078.
  • 17. Zainal SM, Hejazi F, Abd Aziz FNA, Jaafar MS. Constitutive modeling of new synthetic hybrid fibers reinforced concrete from experimental testing in uniaxial compression and tension. Crystals. 2020;10(10):885. https://doi.org/10.3390/cryst10100885.
  • 18. Xue WP, Yao ZS, Jing W, Tang B, Kong G, Xie DZ. Experimental study on damage breakage properties of shaft lining concrete under hydromechanical coupling. Adv Mater Sci Eng. 2018;1671783:10. https://doi.org/10.1155/2018/1671783.
  • 19. Xue WP, Liu XY, Jing W, Yao ZS, Gao C, Li HP. Experimental study and mechanism analysis of permeability sensitivity of mechanically damaged concrete to confining pressure. Cem Concr Res. 2020;134(2-3): 106073. https://doi.org/10.1016/j.cemconres.2020.106073.
  • 20. China Standards Publication. Standard tests method of engineering rock masses: GB/T50266-2013. Beijing: Standard Press of China; 2013.
  • 21. Zhao YL, Tang JZ, Chen Y, Zhang LY, Wang WJ, Wan W, Liao JP. Hydromechanical coupling tests for mechanical and permeability characteristics of fractured limestone in complete stress-strain process. Environ Earth Sci. 2017;76(1):1-18. https://doi.org/10.1007/s12665-016-6322-x.
  • 22. Du YT, Li TC, Li WT, Ren YD, Wang G, He P. Experimental study of mechanical and permeability behaviors during the failure of sandstone containing two preexisting fissures under triaxial compression. Rock Mech Rock Eng. 2020;53(8):3673-97. https://doi.org/10.1007/s00603-020-02119-x.
  • 23. Li TC, Du YT, Zhu QW, Ran JL, Zhang H, Xing XY. Experimental study on strength properties, fracture patterns, and permeability behaviors of sandstone containing two filled fissures under triaxial compression. B Eng Geol Environ. 2021;80(7):5921-38. https://doi.org/10.1007/s10064-021-02286-3.
  • 24. Farnam Y, Moosavi M, Shekarchi M, Babanajad SK, Bagherzadeh A. Behaviour of slurry infiltrated fibre concrete (SIFCON) under triaxial compression. Cem Concr Res. 2010;40(11):1571-81. https://doi.org/10.1016/j.cemconres.2010.06.009.
  • 25. Fu Q, Xu WR, Li D, Li N, Niu DT, Zhang L, Guo BB, Zhang YL. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: Experimental characterisation and strength criterion. Cem Concr Compos. 2021;118: 103954. https://doi.org/10.1016/j.cemconcomp.2021.103954.
  • 26. Lim JC, Ozbakkaloglu T. Investigation of the influence of the application path of confining pressure: tests on actively confined and FRP-confined concretes. J Struct Eng. 2015;141(8):04014203. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001177.
  • 27. Zhang YZ, Ji HG. Pore water pressure change-related characteristic and its critical rupture precursor of rock under triaxial compression. Chine J Eng. 2015;37(4):399-406. https://doi.org/10.13374/j.issn2095-9389.2015.04.001.
  • 28. Chen RZ, Zaghloul MAS, Yan A, Li S, Lu GY, Ames BC, Zolfaghari N, Bunger AP, Li MJ, Chen KP. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes. Opt Express. 2016;24(4):3894-902. https://doi.org/10.1364/OE.24.003894.
  • 29. Cui K, Liang KK, Chang J, Denvid L. Investigation of the macro performance, mechanism, and durability of multiscale steel fiber reinforced low-carbon ecological UHPC. Constr Build Mater. 2022;327:126921. https://doi.org/10.1016/j.conbuildmat.2022.126921.
  • 30. Xin YJ, Lv X, Ji HY, Hao HC, Dong S. Analysis of early damage characteristics and late mechanical behavior of cement specimens. J Chin Coal Soc. 2020;45(9):3119-30. https://doi.org/10.13225/j.cnki.jccs.2019.0755.
  • 31. Terzaghi K. The shearing resistance of saturated soils and the angle between the planes of shear. In: Proceedings of the 1st international conference of soil mechanics and foundation engineering. England: Cambridge; 1936, pp. 54-6.
  • 32. Yan XL, Li XB, Yan KK, Fan YG, Sheng YP. Determination of elastic modulus of cement concrete based on compression test. J Chang’an Univ. 2015;35(4):1-7.
  • 33. Chen X, Yu J, Tang CA, Li H, Wang SY. Experimental and numerical investigation of permeability evolution with damage of sandstone under triaxial compression. Rock Mech Rock Eng. 2017;50(6):1529-49. https://doi.org/10.1007/s00603-017-1169-3.
  • 34. Ren WB, Xu JY, Liu JL, Su HY. Dynamic mechanical properties of geopolymer concrete after water immersion. Ceram Int. 2015;41(9):11852-60. https://doi.org/10.1016/j.ceram int.2015.05.154.
  • 35. Cui K, Lau D, Zhang YY, Chang J. Mechanical properties and mechanism of nano-CaCO3 enhanced sulphoaluminate cement-based reactive powder concrete. Constr Build Mater. 2021;309: 125099. https://doi.org/10.1016/j.conbuildmat.2021.125099.
  • 36. Wang XR, Liu XF, Wang EY, Li XL, Zhang X, Zhang C, Kong B. Experimental research of the AE responses and fracture evolution characteristics for sand-paraffin similar material. Constr Build Mater. 2017;132:446-56. https://doi.org/10.1016/j.conbuildmat.2016.12.028.
  • 37. Poltronieri F, Piccolroaz A, Bigoni D, Baivier SR. A simple and robust elastoplastic constitutive model for concrete. Eng Struct. 2014;60:81-4. https://doi.org/10.1016/j.engstruct.2013.12.007.35.34.
  • 38. Li XL, Chen HJ, Zhang JH. Statistical damage model for whole deformation and failure process of rock considering initial void closure. J Southwest Jiaotong Univ. 2022;57(2):314-21. https://doi.org/10.3969/j.issn.0258-2724.20200220.
  • 39. Lemaitre JA. Continuous damage mechanics model for ductile fracture. J Eng Mater. 1985;107(1):83-9. https://doi.org/10.1115/1.3225775.
  • 40. Shen PW, Tang HM, Wang DN, Ning YB, Zhang YQ, Su XX. A statistical damage constitutive model based on unified strength theory for embankment rocks. Mar Georesour Geotech. 2020;38(7):818-29. https://doi.org/10.1080/1064119X.2019.1633571.
  • 41. Wang W, Tian ZY, Zhu QZ, Li XH, Xu YW. Study of statistical damage constitutive model for rock considering pore water pressure. Chin J Rock Mech Eng. 2015;34(Supp.2):3676-82. https://doi.org/10.13722/j.cnki.jrme.2014.1293.
  • 42. Zhang M, Wang F, Yang Q. Statistical damage constitutive model for rocks based on triaxial compression tests. Chin J Geotech Eng. 2013;35(11):1965-71.
  • 43. Fang Y, Yao ZS, Huang XW, Li XW, Diao NH, Hu K, Li H. Permeability evolution characteristics and microanalysis of reactive powder concrete of drilling shaft lining under stress-seepage coupling. Constr Build Mater. 2022;331: 127336. https://doi.org/10.1016/j.conbuildmat.2022.127336.
  • 44. Kang YM, Liu CW, Jia Y, Ma LW, Fang YQ. Research on statistical damage constitutive model and critical damage for rock subjected to triaxial stress condition. J Sichuan Univ: Eng Sci Edit. 2009;41(4):42-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65872d36-f225-4bae-bd84-fc57be6bc73e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.