
SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 197

1. Introduction

The Web systems are currently becoming the core
infrastructure of almost all business activities. They
belong to the class of complex systems as a result of
the large number of components and their
complicated interactions. As more and more Web
systems are being designed and implemented it's
vital to have means for predicting the behavior of a
given system and ways of selecting the best
(according to some criteria) configuration of the
system components.
Avizienis, Laprie and Randell introduced the idea of
service dependability to provide a uniform approach
to analyzing all aspects of providing a reliable
service: hardware faults, software errors, human
mistakes and even deliberate user misbehavior.
Dependability is defined as the capability of systems
to deliver service that can justifiably be trusted [1].
The visibility of faults is characterized by the
concept of fault – error – failure trichotomy.
Mentioned authors described [1] basic set of
dependability attributes: availability, reliability,
safety, confidentiality, integrity and maintainability.
This is a base of defining different dependability
metrics used in dependability analysis of computer
systems and networks.
In this paper we focus on functional based metrics
which could be used by the operator of the Web

system. Therefore, we consider dependability of a
Web system as a property of the system to reliable
process user tasks. In other words the tasks have to
perform not only without faults but with demanded
performance parameters. Therefore, we need a tool
that will allow us to calculate the response time of
the Web system to a user request.
To do it, we propose a common approach [3] based
on modelling and simulation. The aim of modelling
is to describe the system at a given level of details to
allow efficient system simulation. Whereas, the aim
of simulation is to calculate some performance,
availability and reliability metrics which should
allow to compare different configuration of the
system. They could also be a base for economic
decisions, following ideas presented in [5]. However
this economic analysis is out of the scope of this
paper.
The main decision taken into account during any
system modelling is the system detail level.
Increasing the system details causes the simulation
becoming useless due to the computational
complexity and a large number of required parameter
values to be given. On the other hand, a high level of
modelling could not allow to record required data for
system metric calculation.
Web system are based on TCP/IP protocols and
therefore the most common approach is to use one of
event driven computer network simulations, like

Walkowiak Tomasz
Wroclaw University of Technology, Wroclaw, Poland

Simulation approach to Web system dependability analysis

Keywords

dependability, performance, availability, reliability, failures, Web system, simulation

Abstract

The paper presents an approach to dependability analysis of Web based systems. The analyzed system
consists of tasks that use data, obtained in interaction with other tasks, to produce responses. During system
exploitation, various incidents can occur due to software defects or security attacks. Also the system elements
has to fulfill performance parameters (for example to give answers within given time limits). A software
simulation software was developed based on the PRIME SSF framework. It allows to calculate dependability
metrics: average user response time for different system configuration and different input load (number of
users accessing the system at the same time). The system simulation takes into account the consumption of
computational resources (host processing power). A case study with exemplar simulation results are given.

Walkowiak Tomasz
Simulation approach to Web system dependability analysis

 198

OPNET, NS-2, QualNet, OMNeT++ or
SSFNet/PRIME SSF[10] for simulating Web
systems. Our approach is different and justified in
section 4. We will ignore the TCP/IP aspects and
focus on a process of a user request execution.
Which is understood as a sequence of task realised
on technical infrastructure provided by the Web
system.
The organisation of the paper is as follows. We start
with the Web system model. Next, in section 3,
remarks on simulation techniques are given. It is
followed by the network transmission time
calculation technique (section 4) and the resource
consumption model (sections 5) description. Section
6 describes the case study system used in numerical
experiments. Next section presents the dependability
analysis based on three of the attributes of
dependability: performance, availability and
reliability. We conclude with a short summary and
plans for future works.

2. Simulation model of Web systems

Since the key feature during simulation process is a
calculation of the user response time we need to
model it.
The user initiate the communication requesting some
tasks on a host, it could require a request to another
host or hosts, after the task execution a host responds
to requesting server, and finally the user receives the
final response. Requests and responses of each task
give a sequence of a user task execution – so called
choreography. Assume, that the choreography for
some user ci is given as a sequence of requests [13]:

())(),...,(),()(
21 nbbbi taskctaskctaskccychoregraph =

where)(
ibtaskc could be a request (⇒) to

ibtask or

a response from a given task (⇐).
Tasks are the lowest level observable entities in the
Web system (at least for the model presented here). It
can be seen as a request and response from one
system component to another. Each task is described
by its name and task processing time parameter
(parameter that describes computational complexity
a task). Some tasks require execution of other tasks.
Therefore, optionally, the task could also be
described by a sequence of requests, i.e. list of tasks
to be called.
For example, some choreography could be written
as:

1131

2111)(

ctasktasktask

tasktaskccychoregraph

⇐⇐⇒⇐

⇒⇒=
.

It could be noticed that, the user request processing
time is equal to time for communication between
hosts and the time of each task processing.
Therefore, for the above example of choreography
(assuming some allocation of tasks) the user request
processing time is equal to:

() () ()

() () ()
() () ()01133

31122

21110

1

,,

,,

,,

)(

hhdelayhhdelaytaskpt

hhdelayhhdelaytaskpt

hhdelaytaskpthhdelay

curpt

+++

+++

++

=

, (1)

where ()ji hhdelay ,

 is the time of transmitting the

requests from host hi to hj, and pt(task) is the time of
processing a requests on a given host (on a host on
which a task is allocated).
The task processing time in Web systems depends on
the type of a task (its computational complexity),
type of a host (its computational performance) and a
number of the other tasks being executed in parallel.
This number is changing in a time during system
lifetime. Therefore, it is hard to use analytic method
to calculate formula (1). That is way simulation
approach was proposed.

3. Web system task level simulator

Once a simulation model is developed, it is executed
on a computer. It is done by a computer program
which steps through time. One way of doing it is so
called event-simulation. It is based on an idea of
event. An event is described by time of event
occurring, a type of an event (for example task
request) and an element or a set of elements of the
system on which an event has influence. The
simulation is done by analyzing a queue of events
(sorted by time of event occurring) while updating
the states of the system elements according to rules
related to a given type of event.
The event-simulation program could be written in
any general purpose programming language (like
C++), in any fast prototyping environment (like
Matlab) or in a special purpose discrete-event
simulation kernels.
One of such kernels, is the Scalable Simulation
Framework (SSF) [10] which is a used for the
SSF.Net [10] computer network simulator. The SSF
is an object-oriented API - a collection of class
interfaces with prototype implementations. For a
purpose of simulation of Web systems we have used
Parallel Real-time Immersive Modeling Environment
(PRIME) [7] implementation of SSF. It has much
better documentation then available for original SSF

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 199

and additional methods of synchronization between
processes.
The main advantages of SSF in case of simulating
Web systems is its process oriented approach. The
process in SSF could be seen as an independent
threads of control. It can be blocked waiting for an
event to arrive or for a given period of simulation
time. Since the real Web servers are built as
multithreaded applications processes available in
SSF net simplify Web server implementation in the
simulator. Moreover, the implementation of
processes in SSF is very efficient, much faster than a
usage of general purpose multithreading libraries. A
small test done by authors comparing Java threads to
SSF processes showed that process context switching
(which happen frequently in event simulation – at
least once per one event) in SSF is more than 10
times shorter.

4. Network transmission time

One of key element of the formula (1) which allows
to calculate the user request processing time is the
time of transmission the task data over the network.
As it was mentioned in the introduction there is a
large number of event driven computer network
simulations which are focused on modeling and
simulation of network traffic.
TCP/IP packets level simulation results in a large
number of events during simulation and therefore in
a long simulation time. Experiments performed by
the authors using modified SSF.Net simulator[15]
showed that more than 90% of events (and therefore
more than 90% of simulation time) are connected
with simulating TCP/IP packets. Only remaining
10% with a simulation of task processing.
Therefore, we have proposed the approach[8][12]
based on assumption that task network transmission
time could be modelled by independent random
values:

())1.0,(, ⋅= meanmeanTNormalhhdelay ji ,

where TNormal() denotes the truncated Gaussian
distribution (bounded below 0).
We assume, that the local network throughout is
high enough so there is no relation between the
number of tasks being processed in the system and
the network delay. We think that this assumption is
acceptable since in almost all modern information
systems high speed local networks are used. In a
result, for a large number of Web systems (except
media streaming ones) the local network traffic
influence on the whole system performance is
negligible.

5. Resource consumption model

As it was stated in section three, the key feature
during simulation process is the calculation of the
task processing time. It has to take into account the
consumption of computational resources (mainly
host processing power). Therefore we call it the
resource consumption model (RCM). In this chapter,
we consider three different types of RCMs: queue
models, processor sharing models and function
approximation.

5.1. Function approximation

The simplest approach to RCM is to measure real
task processing time. Example results for IBM DB2
server are presented in Figure 1. Such data could be
stored for further usage during simulation or an
approximation model could be used to represent real
date by fewer number of parameters (for example: a
polynomial approximation).

Figure 1. Processing time of an example task on
IBM DB2 server in a function of concurrent task
number for different types of hosts

Such approach is simple, however requires large
number of practical experiments. Each analyzed task
has to be tested against a large number of requests on
different machines (or one could use VMware server
to change the number of cores and processor
frequency). Moreover, the results are not generic, i.e.
they do not allow to estimate the processing time
when different types of tasks are executed on the
same host. Therafore, more generic approaches has
to be considered.

5.2. Queue models

A common model of computer system is the queue
based one, especially in the area of computer
performance[6]. Usually, authors take into
consideration the processor, hard disk and memory

Walkowiak Tomasz
Simulation approach to Web system dependability analysis

 200

(for example [12]). We propose to simplify the
model and take only processor into account. It results
in the model presented in Figure 2. When processor
is being busy while there are some other tasks being
processed, then the task will queue. After processor
has finished a task execution, it will fetch a queuing
task, using first in first out rule (FIFO).

Figure 2. Host queue model

Therefore, the processing time is equal to the time of
task queuing and being executed on the processor.
This time depends on the host type described by a
performance parameter (performance()) and a
execution time parameter (executiontime()) of a
given task. The execution time of a task is given in
seconds. It is a time of processing a task
measured on a reference host (host with a
performance parameter equal to 1). The time of
executing a task on a single processor is given by a
simple formula:

)(

)(
)(

heperformanc

taskimeexecutiont
taskpt j

j = (2)

The SSF allows simple and effective implementation
of queues. Moreover, the extension of the model to
multi-core hosts could be done is a simple way by
adding a new processes to queue model presented in
Figure 2. The main drawback of the queue model is
the fact that it not follows rules how real tasks are
processed in Web applications, i.e. the time sharing.
The average processing time from a queue model is
realistic but a single value is not.

5.3. Processor sharing

Most of Web servers works in a multithread
environment. Generally speaking, it occurs by time-
division multiplexing. In case of a single processor it
is achieved by switching the processor between
different threads.
For a case, when only one task is executed on a given
host the processing time is constant and equal to a
value given if formula (2).
The algorithm for more than one task being executed
at the same time is more complicated. It is based on
the idea of event-time and processed based
simulation.

Let ,..., 21 ττ be time moments when some tasks are
starting their processing on a given host h. At each of
time events the algorithm updates the processing
time of all currently running task and finds tasks that
finished their execution, i.e. a sum of all allocated
time slots is larger than the execution time
parameter. Next, the algorithm predicts the time of
finishing the task. It is based on an assumption that
there will be no new tasks meanwhile. The shortest
finishing time is selected as a time of a new event – a
possible finish of some task execution. The algorithm
is presented below.

1. ττ =previous

2. τ =current time
3. If new task is coming (with index i)

1)(

0)(

=+
=

hnumber

tasket i

4. For all tasks being processed

 ()
)(

)(
)(

hnumber

heperformanc
tasket previousj ττ −=+

5. For all tasks being processed

6. If)()(jj taskimeexecutionttasket ≥

 finish execution of task j
 1)(=−hnumber
 7. Else (estimate the finish time of task j)

()

)(

)(

)()(

heperformanc

hnumber

taskettaskimeexecutiont jj
e
j

⋅

−+= ττ

8. Add new event at time equal to minimal value of

e
jτ

9. Goto 1

Algorithm 1. Processor sharing RCM

The above algorithm could be easily extended to deal
with multi-core processors just by replacement of
number(h) parameter in formulas in steps 4 and 6 by:

 nhnumber /)(, where n is a number of processor

cores.
The above algorithm generates large number of
events when a large number of tasks is being
executed on a single task at the same time. It is due
to the fact that each new task changes the estimated
time of finishing for all tasks being executed at this
moment. Therefore, we have introduced a simple if
statement in step 8 of the above algorithm that
prevents the generation of a new event if the

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 201

previous one (for the same host) was close enough
(the time difference is smaller than a given
threshold).
The processer sharing RCM gives in the average
similar values to the queue based RCM but is more
realistic in prediction of a single task execution time.

6. Case study system

As an exemplary case study for our solution, we
propose a Web-based e-learning system [9]. The case
study system is built of client network that
represents clients hosts for two different interaction
scenarios and server farm that includes six hosts.

Figure 3. Case study choreographies [9]

Figure 3 presents the choreographies of this system
(two lessons). Each lesson is taken form the service
using authentication component to login, database
component to get the lesson to be learned and again
authorization component to log out. Assuming that

each client is on a different course or level of the
course, each is oblige to log in and log out after
his/her lesson or level. [9]

7. Dependability analysis

7.1. Performance

For the purpose of performance analysis, we
proposed in [14] to use two metrics which could
allow to compare different configuration of
information system.
First metric is an average user response time:

 ())(E curptEURP= . (3)

This metric is intended to be a numerical
representation of client's perception of particular
system quality.
The results, the average user response time in a
function of number of users per second, are
presented in Figure 4. Two different configurations
were considered (hosts with different functional
parameters). It is import to state that due to a
probabilistic character of this metric (and next ones),
the Monte-Carlo [4] technique was used.
The performance of any Web system has a big
influence on the Web system business service
quality. It has been shown[11] that if user will not
receive answer from the system in less than 10
seconds he/she will probably resign from active
interaction with the system and will be distracted by
other ones.

Figure 4. The average user response time for case
study system for two configurations

Therefore, the second proposed metric is a user
acceptance ratio. It is defined as a probability that
user request processing time will be less than a given
time limit (

maxt):

Walkowiak Tomasz
Simulation approach to Web system dependability analysis

 202

() ()maxmax)(P tcurpttUAR ≤= .

It measures the probability that the user will not
resign from active interaction with the Web system
due to a long response time. The achieved results for
the case study system for time limit set to 10 s are
given in Figure 5.

Figure 5. User acceptance ratio for the case study
system

7.2. Availability

The system availability is usually defined as the
probability that the system is operational (provides
correct responses) at a specific time. It is shown that
availability is asymptotically equal to the ratio of
total system uptime tup to the operation time t, i.e.

t

t
A up

t ∞→
= lim .

Assuming a uniform rate of requests, the asymptotic
assessment of availability may be further
transformed to average over simulations:

 






=
N

N
EA OK , (4)

where NOK is the number of requests correctly
handled by the system exposed to a stream of N
requests.
The definition (4) raises the question what means
not correctly handled requests. Up till now we have
assumed that all requests were correctly handled. In
case of real Web servers there could be different
reasons of not correctly handled requests. We will
omit here the hardware and software failures and

their results since they will be discussed in the next
section. Therefore, there are two sources of not
correctly handled requests: timeouts and services
concurrent task limits. The communication protocols
as well as Web services (for example PHP) have
built-in timeouts. If any request is not finished within
a given time limit (in most cases it could be set by
configuration parameters) is assumed as failed. The
other reason of not correctly handled requests is a
limit to a number of tasks handled by a Web server
at the same time. It could be also set by configuration
parameters of any Web server. Since most of the user
tasks consist of a sequence of requests (refer to
section 2), if one from the sequence fails the whole
user task is assumed to be not correctly handled.

Figure 6. The average user response time with a
presence of not correctly handled requests

Figure 7. Availability for the case study system

The example results for the case study system with
time-outs set to 20 s and concurrent task limit set to
200 are presented in Figure 6 and 7.
On the contrary to results presented in Figure 4, the
average user response time presented in Figure 6 is

SSARS 2011
Summer Safety and Reliability Seminars, July 03-09, 2011, Gdańsk-Sopot, Poland

 203

not raising for larger number of users per second. It
is caused by the fact that the average response time
metric (3) is calculated only for correctly handled
user requests. The effect is more understandable
looking in Figure 7, which presents the availability
in a function of number of users. The mentioned
before time-outs and a maximum number of tasks
results in dropping some of requests and therefore in
decrease of the availability parameter.

7.3. Reliability

Reliability is mostly understood as the ability of a
system to perform its required functions for a
specified period of time. It’s is mostly defined as a
probability that a system will perform its function
during a given period of time [2]. For a stationary
systems one could calculate stationary reliability as
the asymptotic value of reliability. The typical
method for reliability analysis is to define system
operational states. Next, calculate the probability of
the system being in a given state, assess the
reliability states as operational or failed and calculate
the reliability as expected value of the system being
operational. The main problem to use such approach
for Web systems is to assign some of operational
states to operational or fail status. Assume, that we
have a system with load balancers [12] and one of
load balancing service is not operating, the whole
system will still be in operating system, however its
performance will drop. To overcome such problems
the availability defined by (4) is the most commonly
used reliability measure of Web based systems,
which could be calculated using proposed here
simulation approach.
The previous section introduced failures as a result of
system functionality, i.e. result of time-outs and
maximum number of requests. We propose to extend
failures to represents Web system faults which occur
in a random way. Of course, there are numerous
sources of faults in complex Web systems. These
encompass hardware malfunctions (transient and
persistent), software bugs, human mistakes, viruses,
exploitation of software vulnerabilities, malware
proliferation, drainage type attacks on system and its
infrastructure (such as ping flooding, DDOS). We
propose to model all of them from the point of view
of resulting failure. We assume, that system failures
could be modeled as a set of failures. Each failure is
assigned to one of hosts and represents a separate
working-failure stochastic process, i.e.:

 >=< λµ,,, pdhfailure ,

where:

 h – is the host on which the failure will happen,
there could be several failures assigned to one
host;

pd – is a numerical value from <0,1> range; it
represents the downgrade of host performance
caused by the failure; 1 means that the host is
down, and therefore all requests send to it are
assumed as failed; values smaller than 1
downgrade the host performance, so enlarge
the task processing time; therefore such type of
failures (with pd <1) could cause the failure of
some requests due to timeout parameter
introduced in the previous section;

µ - is mean value of truncated normal distribution
(with standard deviation equal to 0.1 of the
mean value) which models the repair time, ie.
the time after which the failure will be
repaired and the host will come back to normal
operation;

λ - is the intensity of exponential distribution,
which models the time between failures.

Summarizing, the proposed fault model takes into
account different types of faults, like: viruses or host,
operating system failures. The occurrence of failure
is described by a random process. The time to
failure is modeled by the exponential distribution.
In simulation experiments performed on presented
before case study system we consider two types of
failures for each host: with 1.0 and 0.95 downgrade
of host performance. The first one, represents the
results of host or system operation failure. Since,
today’s computer devices to not failing very often,
the intensity was set to one year per year. The second
types of faults (with 0.95 downgrade parameter) are
modeling any virus or malware occurrence. They are
more probable then a host failure, especially for
systems that are exposed to attacks. Web system are
definitely in this group. Therefore, in our study mean
intensity of virus occurrence is set to 2 per one year.
The mean time of host fault repair is equal to 6 hours
whereas for viruses 3 hours. Threats like viruses
occupy large number of a central processor unit
(CPU). Therefore, in case of a virus occurrence only
5% of host CPU is available for user requests
executions.
The case study system, with the average of 3 requests
per second, was simulated for 3 years. The
simulation was repeated 100 times giving in result
availability (4) equal to 0.99069 [9].

8. Conclusion

We have presented a dependability analysis of Web
systems based on modeling and simulation. The Web
system was modeled as a sequence of tasks that use
data, obtained in interaction with other tasks, to

Walkowiak Tomasz
Simulation approach to Web system dependability analysis

 204

produce responses. The aim of simulation is to allow
calculation of dependability metrics. Performance
(average user response time and user acceptance
ratio) and availability metric were considered. Since
they are defined in a probabilistic way the simulation
uses the Monte-Carlo technique.
The key element of simulation is the task processing
time calculation. Three methods were presented:
function approximation, queue models and
processor sharing. The last method was implemented
inside the developed simulator. The simulation tool
allows to compare (using implemented metrics)
different system configurations. Changes in any
system functional parameters (like choreography,
host performance, intensity of client requests) or
reliability parameters (like intensity of failures or
virus occurrence) could be easily verified.
The main drawback of the availability calculation
method in a presence of failures (section 7.3) is a
time required for simulation. To achieve a numerical
stability of results a large number of simulation
repetitions is required.
We plan to use a different approach which will be
based on a two level simulation. On one (reliability)
level, the probability of each of reliability states will
be estimated. Next for the most probable states
representing more than 99.99%, the functional
simulation will be performed.
The presented work is still in progress. We are now
working on verification of the achieved by
simulation performance metric with the real Web
system performance results.

References

[1] Avižienis, A., Laprie, J. & Randell, B. (2000).
Fundamental Concepts of Dependability. 3rd
Information Survivability Workshop (ISW-2000),
Boston, Massachusetts, USA.

[2] Barlow, R. & Proschan, F . (1996). Mathematical
Theory of Reliability. Society for Industrial and
Applied Mathematics, Philadelphia.

[3] Birta, L. & Arbez, G. (2007). Modelling and
Simulation: Exploring Dynamic System
Behaviour, Springer London.

[4] Fishman, G. (1996). Monte Carlo: Concepts,
Algorithms, and Applications. Springer-Verlag,
New York.

[5] Kaplon, K., Mazurkiewicz, J. & Walkowiak, T.
(2003). Economic Analysis of Discrete Transport
Systems. Risk Decision and Policy, 8, 179-190.

[6] Lavenberg, S.S. (1989). A perspective on
queueing models of computer performance.
Performance Evaluation, 10, Issue 1, 53-76.

[7] Liu, J. (2006). Parallel Real-time Immersive
Modelling Environment (PRIME), Scalable
Simulation Framework (SSF), User’s manual.
Colorado School of Mines Department of
Mathematical and Computer Sciences. [Available
online: http://prime.mines.edu/].

[8] Michalska, K. & Walkowiak, T. (2009).
Simulation approach to performance analysis
information systems with load balancer.
Information systems architecture and technology:
advances in Web-Age Information Systems. 269-
278.

[9] Michalska, K. & Walkowiak, T. (2010). Fault
modelling in service-based oriented information
systems. Information systems architecture and
technology: new developments in Web-Age
Information.89-99.

[10] Nicol, D., Liu, J., Liljenstam, M. & Guanhua, Y.
(2003). Simulation of large scale networks using
SSF. Proc. of the 2003 Winter Simulation
Conference, 1, 650−657.

[11] Nielsen, J. (1994). Usability Engineering. Morgan
Kaufmann, San Francisco.

[12] Rahmawan, H. & Gondokaryono, Y.S. (2009) The
simulation of static load balancing algorithms.
International Conference on Electrical
Engineering and Informatics, ICEEI '09. 2, 640-
645.

[13] Walkowiak, T. (2009). Information systems
performance analysis using task-level simulator.
DepCoS - RELCOMEX 2009, IEEE Computer
Society Press. 218−225.

[14] Walkowiak, T. & Michalska, K. (2010).
Performance analysis of service-based
information system with load balancer -
simulation approach. Dependability of networks,
155-168.

[15] Zyla, M. & Caban, D. (2008). Dependability
Analysis of SOA systems. DepCoS -
RELCOMEX 2008, IEEE Computer Society
Press, 301-306.

