Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Agregaty polimerowo-micelarne jako efektywny reduktor strat energetycznych w przepływach rurowych
Języki publikacji
Abstrakty
The paper presents polymer-micellar aggregates as efficient drag reducers of the energy losses in straight pipe flow. A small amount of high molecular polymers: Polyethylene Oxide, Cetyltrimetyl Ammonium Bromide surfactant and Sodium Salicylate salt additives, are applied to obtain polymer-micellar aggregates formation. An analysis of how polymermicellar additives influence the shape and character of flow resistance curves has been performed. It is documented that for polymer-micellar solutions the stable transitional zone between, the laminar and the turbulent flows are extended toward higher values of the Reynolds number. Occurrence of the third turbulent zone of drag reduction is also observed.
W artykule przedstawiono agregaty polimerowo-micelarne jako efektywny reduktor strat energetycznych w przepływach rurowych. Do procesu formowania agregatów wykorzystano niewielkie ilości wielkocząsteczkowego politlenku etylenu i substancji powierzchniowo czynnej bromku heksadecylotrójmetyloamoniowego z dodatkiem salicylanu sodu. Dokonano analizy wpływu roztworu polimerowo-micelarnego na kształt i charakter krzywych oporów przepływu. Dla analizowanych roztworów zaobserwowano rozszerzenie stabilnej strefy przejściowej w kierunku większych wartości liczby Reynoldsa. Zaobserwowano również trzecią, turbulentną strefę redukcji oporów przepływu.
Czasopismo
Rocznik
Tom
Strony
175--190
Opis fizyczny
Bibliogr. 28 poz., wykr., rys., wz.
Twórcy
autor
- Institute of Thermal and Process Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
autor
- Institute of Thermal and Process Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
Bibliografia
- [1] Toms, B. A., Some Observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proceedings of the International Congress of Rheology, Holland, North-Holland, Amsterdam, Section II, 1948, 135-141.
- [2] Mysels, K. J., Flow of thickened fluid. December 27, US Patent 2, 492:173, 1949.
- [3] Virk P. S., Drag reduction fundamentals, AIChE Journal, vol. 21, Issue 4, 1975, 625-656.
- [4] Sellin, R. H. J., Hoyt, J. W., Poliert, J., Scrivener, O., The effect of drag reducing additives on fluid flows and there industrial applications part II: present applications and futures proposals. Journal of Hydraulic Research, vol. 20, 1982, 235-292.
- [5] Matras Z., Przepływ cieczy Tomsa w przewodach kołowych, Politechnika Krakowska, Monografia 29, 1984.
- [6] Gyr A., Bewersdorff H. W., Drag reduction of turbulent flows by additives, vol. 32, Kluwer Academic Publishers, P.O. Box 17, 3300 AA, 1995.
- [7] White, C. M., Mungal, M. G., Mechanics and Predictions of Turbulent Drag Reduction with Polymer Additives, Annular Review of Fluid Mechanics, no. 40, 2008, 235-256.
- [8] Wang Y., Yu B., Zakin J. L., Shi H., Review on Drag reduction and Its Heat Transfer by Additives, Advances in Mechanical Engineering, no. 10,2011, 17.
- [9] Dujmovich T. and Gallegos A., Drag reducers improve throughput, cut costs, Offshore, vol. 65, no. 12, 2005, 55-58.
- [10] Fabula, A. G., Fire-fighting benefits of polymeric friction reduction. Trans ASME J Basic Engng, 1971, 93-453.
- [11] Motier, J. F., Chou L. C., Kommareddi N. S., Commercial drag reduction: past, present, and future, Proceedings of the ASME Fluids Engineering Division Summer Meeting, San Diego, Calif, USA 1996.
- [12] Tamano S., Ito M., Kato K. and Yokota K., Turbulent drag reduction in nonionic surfactant solutions, Physics of Fluids, vol. 22(5), 2010, 055102.
- [13] Cai S.-P., Drag reduction of a cationic surfactant solution and its shear stress relaxation, Jurnal of Hydrodynamics, vol. 24(2), 2012, 202-206.
- [14] Warholic M. D., Heist D. K., Katcher M., Hanratty T. J., A study with particle- imagevelocimetry of the influence of drag-reducing polymers on the structure of turbulence,Exp. Fluids, vol. 31, 2001, 474-483.
- [15] Liberatore M. W., Baik S., Mchugh A. J., Hanratty T. J., Turbulent drag reduction of polyacrylamide solutions: effect of degradation on molecular weight distribution. J. Non-Newtonian Fluid Mech., vol. 123, 2004, 175-183.
- [16] Hadri F., Besq A., Guillou S., Makhloufi R., Drag reduction with an aqueous solution of CTAC-NaSal: Study of the wall slip with a Couette geometry, Comptes Rendus Mécanique, vol. 338, Issue 3, 2010, 152-157, ISSN 1631-0721.
- [17] Minatti E., Zanette D., Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity, Colloids Surfaces A: Phisicochem Eng Aspects, 1996, 113:237.
- [18] Hou Z., Li Z., Wang H., Interaction between poly(ethylene oxide) and sodium dodecyl sulfonate as studied by surface tension, conductivity, viscosity, electron spin resonance and nuclear magnetic resonance, Colloid Polym. Sci., vol. 277, 1999, 1011-1018.
- [19] Goddard E. D., Polymer/Surfactant Interaction: Interfacial Aspects, Journal of Colloid and Interface Science, vol. 256, 2002, 228-235.
- [20] Suksamranchit S., Sirivat A., Jamieson A. M., Polymer–surfactant complex formation and its effect on turbulent wall shear stress, Journal of Colloid and Interface Science, vol. 294, Issue 1, 2006, 212-221, ISSN 0021-9797.
- [21] Matras Z., Malcher T., Gzyl-Malcher B., The influence of polymer-surfactant aggregates on drag reduction, Thin Solids Films, vol. 516, 2008, 8848-8851.
- [22] Kim J. T., Kim C. A., Zhang K., Jang C. H., Choi H. J, Effect of polymer–surfactant interaction on its turbulent drag reduction, Colloids and Surfaces A: Physicochemicaland Engineering Aspects, vol. 391, Issues 1-3, 2011, 125-129, ISSN 0927-7757.
- [23] Mohsenipour A. A., Pal R., The Role of Surfactants in Mechanical Degradation of Drag-Reducing Polymers, Ind. Eng. Chem. Res., vol. 52 (3), 2013, 1291-1302.
- [24] Mohsenipour A. A., Pal R., Prajapati K., Effect of cationic surfactant addition on the drag reduction behaviour of anionic polymer solutions, The Canadian Journal of Chemical Engineering, vol. 91, Issue 1, 2013, 181-189.
- [25] Matras Z. and Kopiczak B., Intensification of drag reduction effect by simultaneous addition of ,surfactant and high molecular polymer into the solvent, Chemical Engineering Research and Design, vol. 96, 2015, 35-42.
- [26] Jönsson B., Lindman B., Holmberg K., Kronberg B., Surfactants and polymers inaqueous solution, John Wiley & Sons, Chichester, UK 1998.
- [27] Diamant H., Andelman D., Onset of self-assembly in polymer-surfactant systems, Europhysics Letters, vol. 48(2), 1999, 170-176.
- [28] Matras Z., Walczak S., The capillary-pipe rheometer for the identification of complex properties of multiphase non-Newtonian fluids, Inżynieria i Aparatura Chemiczna, No. 6,2006, 150-151.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6581bd53-2b43-4e56-b787-19c057a4641c