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ANALYSIS OF THE LONGWALL CONVEYOR CHAIN BASED ON A HARMONIC ANALYSIS

Analiza pracy łańcucha przenośnika ścianowego 
w oparciu o analizę harmoniczną*

This paper describes the use of harmonic analysis in the analysis of a longwall conveyor chain. Correct and stable operation of 
the chain is connected both with the safety of the work and the economic performance of the transportation process. The aim of the 
study was to show the ability to detect changes in conveyor work related to damage or improperly conducted procedure of chain 
length changing. Observation of the conveyor chain work was to monitor the power consumption of the three motors driving the 
conveyor. The analysis included nearly 26 000 startups have been reported within 20 months of the conveyor work. This paper de-
scribes the initial stage of raw measurement data analysis, and analysis of data transformed by the Fourier transform. As a result 
of the data analysis, diagnostic procedures allowing to signal deviations from the conveyor normal conditions were proposed.
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Artykuł opisuje zastosowanie analizy harmonicznej do analizy stanu łańcucha przenośnika ścianowego. Poprawna i stabilna 
praca łańcucha wiąże się zarówno z bezpieczeństwem prowadzenia prac jak i ekonomiczną wydajnością procesu. Celem prze-
prowadzonych badań było wskazanie możliwości wykrywania zmian pracy przenośnika związanych z uszkodzeniem bądź prze-
prowadzoną w sposób nieprawidłowy procedurą zmiany długości łańcucha. Obserwacja pracy łańcucha przenośnika polegała 
na monitorowaniu poboru prądu przez trzy silniki napędzające przenośnik.  Analizie poddano blisko 26 000 uruchomień, jakie 
odnotowano w okresie 20 miesięcy pracy przenośnika. W pracy opisano etap wstępnej analizy surowych danych pomiarowych, 
a także analizy danych przekształcony transformacją Fouriera. W rezultacie analizy danych zaproponowano procedury diagno-
styczne pozwalające sygnalizować odstępstwa od normalnych warunków pracy przenośnika.
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1. Introduction

In the industry, including coal mining, there is observed signifi-
cant increase in the importance of information derived from the moni-
toring systems. The main task of the monitoring system is to visualize 
the current state of the devices (e.g. power consumption, temperature, 
fluid pressure and levels (cooling, hydraulic) etc.).

It can be assumed that at the present time functionality of moni-
toring systems provides full monitoring and visualization of any in-
dustrial process (production, machines and equipment work, natural 
hazards, etc.). The data collected by these systems are mainly used for 
the current visualization and reporting.

At the moment, more and more software developers and users of 
monitoring systems indicate the need for analysis of the data collected 
in their repositories. In particular, the purpose of this analysis may be 
defining the diagnostic models of monitored devices [2, 7, 15]. Iden-
tification of diagnostic model may be done through the planned ex-
periments or analysis of data collected during device operation. In this 
paper we concentrate on the second approach. Based on data collected 
by SMOK [13], the longwall monitoring system, we present how the 
application of the Fourier transform can be used to detect changes in 
longwall conveyor chain (in particular by joining the chains with dif-
ferent parameters).

This paper is organized as follows: the next section provides a 
short overview of the work related to diagnostics of mining machines, 
in particular longwall conveyor. The following part describes the 
stages of initial data processing and a substantial processing of the 

recorded signals. This is followed by diagnostic models, based on an 
analysis of the value described here in the paper as a basic period.

2. Analysis of longwall conveyor

The problem of monitoring and diagnosing the condition of ma-
chines used in the mining industry was raised in [2, 4, 5, 6, 10, 11, 
15]. It has also been reviewed extensively in [2, 5, 15]. Papers [2, 15] 
also present new methods of extracting and processing of diagnostic 
features to discover diagnostic relations. In particular, a part of the 
work [2] was devoted to the diagnosis of belt conveyors, used as the 
main transport device in the mining industry. In [11] power consump-
tion and temperature of a coal combine cutting heads were monitored. 
Therefore, three operating states of the coal combine were defined. 
Two of the identified states describe different but correct conditions of 
mining. This work has identified a parameter describing the efficiency 
of the coal combine cooling system.

Diagnosis of longwall conveyor was the subject of such works as 
[4, 6, 10]. The work [4] presents a method for detecting defects on a 
conveyor chute of the bottom side of the conveyor. Based on the analy-
sis of power consumption of longwall conveyor driving motors during 
one repair shift, the damage was localized with an accuracy of one sec-
tion. In [6] a comprehensive management system of the conveyor belt 
components was proposed. The system allows generating both sum-
mary statements and, operational and analytical reports. These reports 
allow for evaluation of the conveyors monitored in the system.
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In [10] power consumption of motor driving the conveyor is ana-
lyzed. The result of the study is to propose summary reports of motor 
operation including the level of exceeded values of the rated current 
as well as the duration of the exceedances. In addition there was pro-
posed rule-based description of the operating parameters of the motor, 
based on association rules [1].

3. Acquisition of measurement data

The results presented in the latter part of the paper were obtained 
due to the analysis of power consumption of each of the motors driv-
ing the conveyor transport system. We analyzed data from two peri-
ods of operation of the conveyor. Later in the paper, the time interval 
between the turning on and turning off the conveyor will be called 
startups. In the first period (called P) lasting more than 19 months, 
there were more than 24 500 startups of the conveyor, in the sec-
ond period (called NP) more than 1 200 startups were reported. The 
most important, from the point of view of data analysis, was that in 
the second period a part of the chain was replaced with another one. 
Unfortunately, information about the difference in the construction of 
both chains was not available, therefore, it could not be assumed that 
replaced part of the chain was composed of links of different size or 
scrapers were placed in the other intervals.

Observation of work consisted in measuring the power consump-
tion by each of the three motors of the conveyor within one second 
intervals. Motors identified as M1 and M2, served as a “pulling”, the 
task of the motor denoted as M3 was pulling the chain from under the 
conveyor (turning back). The analyzed conveyor was equipped with 
two-speed starter.

3.1.	 Initial processing of data

The aim of the analysis was to evaluate the work of conveyor in a 
steady state. In the measurement data concerning each startup the first 
two phases were omitted: work at low speed and switching the motor 
from low to high speed. Duration of speed shifting phase and conse-
quent increase in the values of current was based on observations at 
20 seconds from the moment of switching on high speed.

In the next step of data processing all startups were discarded from 
the analysis, the duration of which is less than 80 seconds, since assuming 
the conveyor moving speed is about 1.5 m/s in this time conveyor path 
was shorter than the length of the longwall (it was more than 110m).

The last stage of pre-processing was the data smoothing. The 
smoothing process consisted of averaging the value 
of power consumption based on n preceding and n 
subsequent values (moving average).

Taking as x(i), unsmoothed value of current at 
the time i, the smoothed value at the moment i is 
given by formula (1):
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where: x′(i) represents a new smoothed value, n 
is a smoothing parameter, whose value equaled 5 
(which corresponds to averaging nine consecutive 
values). This value allows to compromise between 
filtering fast-changing current intensity components 
and keeping the nature of the course. This value was 
determined by observing smoothed courses of 30 randomly chosen 
long (more than 120 s) startups. For the first four and last four mea-

surements averaging were not performed. Sample comparison of the 
original and smoothed course is shown in Fig. 1.

3.2.	 Data transformation into the frequency domain

Diagnosis of a chain in conveyor means studying periodicity of 
rolling the chain through the conveyor. The aim is to check whether 
during conveyor operation, periodicity of the conveyor work can be 
registered and whether changes of periodicity can be associated with 
damage or improperly conducted “repairs” of the chain.

It should be noted that it is impossible to diagnose individual links 
in the chain, this happens due to the sampling frequency of measure-
ment data. Sampling time in the monitoring system is one second, the 
conveyor during its work moves at a speed of about 1.5 m / s (± 10%). 
As a result, between two consecutive samples the conveyor travels 
generally longer than the length of a single link.

For the collected measurement data the Fourier transform was 
used. For each of the motors the changes frequency spectrum of cur-
rent was obtained. After analyzing the spectra for many motors of 
many startups, it was observed that the initial values of the spectrum 
(corresponding to the lowest frequencies) obtain disproportionately 
high values ​​(especially for the first argument, corresponding to the 
constant component of signal), thereby distorting the spectrum of mo-
tors work. Therefore, it was concluded that the domain of spectrum 
should be reduced of the initial arguments. Finally, it was found that 
the first two arguments obtained in the distribution will be excluded.

Due to the fact that distribution values showed the highest signifi-
cance in the initial (the lowest) frequency domain (fractional hertz) it 
was decided to consider time domain instead of frequency domain. Fur-

Fig. 1.	 Comparison of unsmoothed and smoothed courses describing the cur-
rent consumption of one of the motors.

Fig. 2. Illustration of spectrum transform into periodogram

M3 motor current spectrum for the startup 
marked as 1192. 

The X-axis unit is 1 Hz

Periodogram of M3 motor startup marked as 
1192. The X-axis unit is 1 second
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ther analysis was based on the periodogram observation that showed 
how input course of current intensity change is distributed into sinusoi-
dal changes in a specified period of time. Comparison of the spectrum 
and the periodogram for a selected startup is illustrated in Fig. 2.

In the example, for each single startup and at the same time for 
each of the three motors, were obtained graphs showing changes in 
the current intensity depending on the period of these changes. Fur-
ther analysis of the data focused on local maxima in received peri-
odograms. For each of the motors five periods with the greatest local 
maxima in periodogram were taken into account, sorting them from 
the most significant. These periods are marked: M11, M12, …, M15 
and analogically M21, M22, …, M25 and M31, M32, …, M35.

4. Analysis of longwall conveyor motors

After analyzing periodograms, in such a way as described in the 
previous section, each conveyor startup was characterized by a vector 
of 15 features. Analysis of the resulting data set has demonstrated that 
it is impossible to determine the relationship between the basic period 
(the basic period T means the time in which the chain travels equal to 
twice the length of the conveyor), and one (for example, the largest) 
value in periodogram.

The first attempt to identify the basic period was based on the 
calculation of arithmetic mean values of M11, M21 and M31, sepa-
rately for startups recognized as correct (startups of period P) and in-
correct startups (startups of period NP). Mean values of M11, M21, 
M31 for correct startups marked γi, i∈{1,2,3}. Mean values of M11, 
M21, M31 for incorrect startups were marked βi, i∈{1,2,3}. Then, for 
each startup there was calculated distance between γi, and M11, M21 
and M31, as well as for βi, and M11, M21 and M31. On this basis 
startups were being classified as correct or incorrect. The highest ac-
curacy was achieved for means γ3 and β3. However, the results were 
not satisfactory, because the variance of the variable M31 for correct 
and incorrect startups was very high. As a result, algorithm reflecting 
presented way of classification was characterized by low sensitivity 
and specificity (i.e. a large number of correct startups was recognized 
as incorrect and vice versa).

It was necessary to take actions leading to a situation in which 
the variance of the strongest period, derived from the analysis of 
periodograms of motors M3, M2, M1 would be as small as possible. 
Therefore such a filter is defined to minimize the variance for correct 
startups, ignoring the incorrect, with assumption that in case of incor-
rect starts the basic period should change.

Therefore the following actions were taken:
Startups of less than 4 minutes were removed. For startups 1)	
shorter than 4 minutes in most cases the strongest period was 
less than 70 seconds, it was then considered that the length 
of the chain is longer than 110 meters, so these periods were 
found to be incorrect;
In order to determine the basic period that allows distinguish-2)	
ing between correct and incorrect start the following logic rule 
was fixed (RL):

IF M31=M21=M11 THEN T=M31
  ELSE
  IF ((M31=M22=M12) OR (M31=M23=M13) OR (M31=M24=M14) OR 
          (M31=M25=M15)) THEN T=M31
          ELSE
          IF ((M31<M22) AND (M22=M12) AND (Time>300)) THEN T=M22
             ELSE T=M31

In the formula above it can be observed that it was necessary to 
extend the duration of the startup to 5 minutes (300 seconds), the re-
maining part of the formula is somehow responsible for negotiating the 
length of the basic period, which can be identified in periodogram.

Using the methodology outlined above, there was obtained the 
mean value for the basic period for the correct startups equal to γ = 117 s, 

with a standard deviation σ = 36.28 s. For incorrect startups these values 
were β = 158.43 s, σ = 105.66 s. In order to further reduce the variance 
of the basic period for correct startups, all startups of which the basic 
period T <100 s were removed. Finally, there were achieved 7125 start-
ups, among which for correct startups the mean of the basic period was 
γ = 128.45 s, and the standard deviation σ = 8.63 s (Fig. 3).

Presented way of filtration and identification of the basic period 
does not allow for the diagnostics of the conveyor after each startup, 
as these shorter than 5 minutes will not be the subject of evaluation, 
however, we obtain the possibility of diagnosing on average of every 
second startup. Average daily number of startups was 25, while the 
average daily number of startups, for which performing the diagnostic 
procedure is possible, is 12.

Now it is possible to perform diagnostic procedure using the pa-
rameters γ and β. However, this will be a diagnostic procedure for a 
specific type of change in working conditions of conveyor (lengthen-
ing the chain by combining different chains). In order to diagnose 
unknown types of error it is necessary to monitor whether the basic 
period and its standard deviation change.

Distribution of the basic period for correct startups was a nor-
mal distribution (Shapiro-Wilk W test was performed), nine-
ty-five percent of startups should therefore lie in the interval 
[γ−1.95996σ, γ+1.95996σ]. It appears that it can be assumed that the 
distribution of the basic period is a normal distribution, with various 
values ​​of the mean (γ) and the standard deviation σ. If, however, it 
turned out differently, it is always under the Chebyshev inequality 
holds. It  says that for any k>1 probability that a randomly selected 
feature value differs from the expected value by more than ±kσ  is at 
most 1/k2, which is outside the range [γ−2σ, γ+2σ] is at most 25% of 
the feature value.

This information can be used in the following way: as an incorrect 
startup (or rather: different from the pattern found to be diagnostically 
correct) will be considered such a strartup, the basic period of which will 

Fig. 3.	 The chart of the basic period of each startup after the final data filtra-
tion.

Fig. 4. Distribution of the basic period for correct startups.
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not lie in the mentioned intervals. In such a case, the user would have 
the ability to view courses of current on all three motors and browse 
periodograms. As a result, one would qualify startups as actually incor-
rect, or could change the value of the basic period, when it would clearly 
result from the periodogram, thus, from the actual reconstruction of the 
conveyor. The second option would include the phase of updating pa-
rameters used in diagnostic procedures. Information about the recon-
struction of the structure of the monitored device or its location is often 
registered into diagnostic or monitoring systems with a delay.

To further reduce the number of the user interventions, incorrect 
startups may be only these for which the basic period will be an out-
lier. For the filtered the basic periods, median M and the first and 
third quartiles (Q1 and Q3, respectively) can be calculated, then the 
interquartile range IQR is expressed by the formula (2)

	 IQR= Q3− Q1	 (2)

Values lying in the ranges (Q3+1.5IQR, Q3+3IQR] and [Q1−3IQR, 
Q1−1.5IQR) are considered outliers. Values grater than Q3+3IQR and 
less than Q1−3IQR are considered extreme outliers. In the case of di-
agnosis referred to in this paper, the user would observe all startups 
for which outliers in the basic period were registered.

Information about specificity and sensitivity of diagnostic proce-
dure described above is presented in Table 1. Diagnostic procedures 
verification was performed on the data set used for defining the Table.

Taking all the analyses into consideration, the following diagnos-
tics scheme can be proposed:

Select a group of startups reflecting correct operation of the 1.	
conveyor.
Select a group of startups reflecting incorrect operation of the 2.	
motor (if there are startups describing different types of fail-
ure, for each failure type create a separate group). Point 2 can 
be omitted if you have examples only of correct startups.

(the following points concern of all three motors, these actions 
apply only to startups selected in step 2)

For all the startups perform the processes of deleting low 3.	
speed and switching into high speed.
For all startups perform data smoothing process.4.	
For all startups perform the process of determining the Fourier 5.	
transform, skip the first two components and determine the 
reciprocal of arguments in frequency domain.
For all startups find the first five maximum values in periodo-6.	
gram and determine their equivalent arguments.
For each startup specify a value of the basic period according 7.	
to the rule RL (section 3.3).
Determine the arithmetic means and standard deviations, as well 8.	
as quartiles and interquartile range for correct startups group.

Determine the arithmetic means and standard deviations for 9.	
all identified groups of incorrect startups.
Determine limits for outliers (formula (2)).10.	
For each new startup begin the diagnostic procedure, checking 11.	
whether startup parameters qualify it as correct or incorrect.

Block diagram of the procedure is shown in Fig. 5.

The diagnostic procedure presented above includes some incon-
venience. The most important one is the need to define the rule (RL) 
identifying the basic period. Such methodology is not appropriate 
if the ultimate goal is automation of the diagnosis process. As it is 
known, in order to define the diagnostic model of the device, machine 
learning also can be applied [7, 15]. As sets of correct (Period A) and 
incorrect (Period B) startups of conveyor were available, rule induc-
tion algorithm PART was used [3, 14]. Calculations were carried out 
in Weka environment [14]. Detailed description of PART algorithm 
can be found in [3].

In the data set submitted to the algorithm, each startup was char-
acterized by already mentioned in section 3.2 vector of 15 features 
(local maxima in periodograms), also used to identify the rule RL. 
The results are presented in Table 2. The first line of Table 2 presents 
the results obtained by using 10-fold cross validation. The second line 
presents the result of the analysis of whole available set of examples 
(i.e. without isolating a test set).

As it can be observed, the results obtained by PART and the diag-
nostic method based on the distance from the means γ, β (the last line 
of Table 1) are satisfactory. The best sensitivity and specificity lies 
in the method applying the PART algorithm to recognize correct and 
incorrect startups. Therefore, in the diagnostic scheme (points 1-11), 
points 8 and 9 can be replaced by training the classifier and including 
it into the diagnostic process.

The fact is, that presented methods of identification the correct 
values of the basic period (including the method based on rule induc-
tion) need a set of positive examples (correct startups) and negative 

Table 1.	 Information about the  number of true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN) for different diag-
nostic methods.

Method TP FP TN FN

Normal distribution (2σ) 5713 212 123 1077

Normal distribution (1σ) 5119 806 316 884

Outliers 5718 207 1146 54

Distance from the means 
γ, β 5921 4 923 277

Fig. 5. Block diagram of the diagnostic procedure.

Table 2.	 Information about the number of true positives (TP), true negatives 
(TN), false positives (FP) and false negatives (FN) for the basic period 
identification based on rule induction

Metod TP FP TN FN

PART (10CV) 5875 51 1138 60

PART 5896 30 1173 25
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examples (incorrect startups). This diagnostic method can be used 
only after a certain period of conveyor work. In the initial period of 
operation, we may assume that the conveyor is working properly, and 
the Fourier analysis (in particular analysis of the values classified as 
outliers in terms of the basic period) allows for identification of poten-
tially incorrect startups. After collecting sufficient number of negative 
examples based on the Fourier analysis (based on the characteristics 
resulting from the analysis), the classifier is determined and then it is 
used for fully automatic diagnostics.

Note also that the set of negative examples can be created based on 
startups considered as incorrect for various reasons (reflecting various 
types of damage). In this situation we may deal with so-called concept 
drift, resulting in the need to re-train classifier on the extended set of 
negative examples, in order to improve its sensitivity and specificity. 
However, this process can be automated.

The procedure suggested here including: acquisition of a set of 
positive and negative examples, monitoring the classifier quality and 
(if necessary) re-training it, has successfully been applied to predict the 
total energy of seismic events that were recorded in a given period of 
time in coal mines [8] and to predict the concentration of methane [9].

Certainly, acquisition of diagnostic knowledge (correct and incor-
rect startups) can be carried out also by the planned experiment [7]. 

However, it is definitely more complicated in underground conditions 
of conveyor work.

5. Summary

This paper presents the diagnostic procedure, which allows moni-
toring work of a longwall conveyor, with particular emphasis on the 
diagnostics of “transporting” chain. Diagnostic procedure is based on 
harmonic analysis, power analysis, monitoring of outliers, as well as 
the induction of classification rules. The work presents all the neces-
sary steps to allow the implementation of the presented diagnostic 
procedure. The results are satisfactory, developed diagnostic proce-
dure can with high precision indicate correct and incorrect startups. 
The procedure generates a small number of so-called false alarms 
which is especially important for the dispatcher monitoring more de-
vices working. It is planned to implement presented diagnostic proce-
dure into the monitoring system DEMKop [12] (the successor of the 
SMoK system).

The work was financed by the European Union through the Eu-
ropean Social Fund (contract number: UDA-POKL.04.01.01-00-
106/09 – first author) and the Rector of the Silesian University of 

Technology (grant RGH-2/RAu0/2012 – second author). The authors 
also wish to thank the anonymous reviewers, who served a valuable 

remarks and comments.
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