Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Wykończenie nanopowłokowe metodą zol-żel zwiększające trwałość użytkową tkanin poliestrowo-bawełnianychends
Języki publikacji
Abstrakty
A serious drawback of the commonly used textiles of polyester/cotton fibres blends (PET/CO), especially those containing worse cotton brands, is their great susceptibility to form pilling, which adversely affects their performance durability and aesthetic values. Among the many methods of preventing this phenomenon, the thin-coating finishing performed by sol-gel methods provides interesting possibilities in this field. By a proper selection of precursors and synthesis method as well as the deposition of sols, it is possible to form xerogel coats on the fibre surface characterised by considerable hardness and abrasion resistance, thus reducing the formation of pilling, without any deterioration in the aesthetic values of textiles. Moreover, these coatings are strongly combined with the fibre surface and are resistant to the conditions of use and care, including multiple washing processes. The thin-coat finishing of this type also increases the abrasion resistance of textiles with a dominating content of polyester fibres, and thus it positively influences the performance value of textile fabrics. This paper presents the test results of using the hybrid modified SiO2/Al2O3 sol developed, synthesised with the use of two precursors: (3-glycidoxypropyl) trimethoxysilane (GPTMS) and aluminium isopropoxide (ALIPO), and the conditions of its application to the thin-coat finishing of PET/CO (67:33) woven fabrics were selected to increase their abrasion resistance and prevent the formation of pilling. Consequently, the fabric susceptibility to form pilling was practically completely eliminated (assessment at level 5 according to the Martindale test), and the fabric abrasion resistance was increased by 38%, with the effects obtained being resistant to prolonged laundering.
Istotną wadą tekstyliów z mieszanek włókien poliestrowych i bawełnianych jest ich duża skłonność do tworzenia pillingu, co negatywnie wpływa na trwałość użytkową oraz cechy estetyczne wyrobów. Wśród wielu sposobów przeciwdziałania tej skłonności, duże możliwości stwarza wykończenia nanopowłokowe metodą zol-żel. W rezultacie prowadzonych badań ustalono, że w wyniku odpowiedniego doboru prekursorów i addytywów oraz opracowanych metod syntezy, a następnie włókienniczej aplikacji zoli, można wytwarzać na powierzchniach włókien cienkie powłoki kserożelowe, które nie powodując pogorszenia cech estetycznych tekstyliów, jednocześnie istotnie zwiększają odporność tkanin na ścieranie, a więc i mechacenie, a w rezultacie na tworzenie pillingu. Powłoki takie są silnie związane z powierzchniami włókien i odporne na warunki użytkowania i konserwacji wyrobów, w tym wielokrotne prani
Słowa kluczowe
Czasopismo
Rocznik
Strony
83--88
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
- Poland, Łódź, Textile Research Institute, Department of Non-conventional Techniques and Textiles
autor
- Poland, Łódź, Textile Research Institute, Department of Non-conventional Techniques and Textiles
autor
- Poland, Wrocław, Wrocław University of Technology, Institute of Materials Science and Applied Mechanics
autor
- Poland, Wrocław, Wrocław University of Technology, Institute of Materials Science and Applied Mechanics
autor
- Poland, Łódź, Centre of Molecular and Macromolecular Studies – Polish Academy of Sciences
Bibliografia
- 1. Hearle J. W. S., Wilkins A. H.; Mechanistic modelling of pilling. Part I and II. Journal of the Textile Institute Vol. 97,No. 4, 2006, pp. 359-368 and pp. 369-376.
- 2. Naylor G. R. S., Nasser A., Ramsey D. J.; The kinetic model of pilling revisited. Textile Research Journal. Vol. 81, No. 3, 2011, pp. 247-253.
- 3. Brzeziński S. Malinowska G., Nowak T.; High-Tech Sports Clothing with High Comforty of Use Made from Multi-Layer Composite Materials. Fibres&Textiles in Eastern Europe. 2005, Vol. 13, No. 4(52), pp. 90-93.
- 4. Brzeziński S., Malinowska G., Nowak T., Marcinkowska D., Kaleta A.; Structure and Properties of Micro-porous Polyurethane Membranes designed for Textilepolymeric Composite Systems. Fibres & Textiles in Eastern Europe, Vol. 13, No. 6(54) 2005, pp. 53-58.
- 5. Brzeziński S., Jasiorski M., Maruszewski K., Ornat M., Malinowska G., Karbownik I., Borak B.; Bacteriostatic textile-polymeric coat materials modified with nanoparticles, Polimery, Vol. LII,.No. 5, 2007, pp. 362-366.
- 6. Textor T., Mahltig B.; Nanosols and Textiles. Chapter 1-3. pp. 1-65, World Scientific Publishing Ltd. - New Jersey- London-Singapore-Beijing-Shanghai- Hong Kong-Taipei-Chennai, 2008.
- 7. Multi-author work, Ed. Wei, Q.; Surface Modification of Textiles. Chapter 9.: Textor, T.: Modification of textile surfaces using the sol-gel technique. pp. 185-213. Woodhead Publishing Ltd. Oxford-Cambridge- New Delhi, 2009.
- 8. Brinker C. J., Scherer G.; Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston, 1990.
- 9. Textor T., Knittel D., Bahners T., Schollmeyer E.; Inorganic-organic hybrid polymers for coating textile materials. Current Trends in Polymer Science, Vol. 8, 2003, pp. 127-133.
- 10. Schottner G.; Hybrid Sol-Gel_Derived Polymers: Application of Multifunctional Materials. Chem. Mater. Vol. 13, 2001, pp. 3422-3455.
- 11. Schubert U., Hüsing N., Lorenz A.; Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chem.Mater. Vol. 7, 1995, pp. 2010-2027.
- 12. Xiao X., Chen F., Wei Q., Wu N.; Surface modification of polyester nonwoven fabrics by Al2O3 sol-gel coating” J. Coat. Technol. Res. Vol. 6, 2009, pp. 537-541.
- 13. Textor T., Bahners T., Schollmeyer E.;Modern Approaches for Intelligent Surface Modification. J. Ind. Text. Vol. 32, 2003, pp. 279-289.
- 14. Textor T., Bahners T, Schollmeyer E.;Surface Modification of Textile Fabrics by Coatings Based on the Sol-Gel Process. Melliand Textilber. International. Vol. 80, 1999, p. E229.
- 15. Mahltig B., Haufe H., Böttcher H.; Functionalisation of textiles by inorganic sol-gel coatings. J.Mater.Chem. Vol. 15, 2005, pp. 4385-4398.
- 16. Haas K.-H., Amberg-Schwab S., Rose K.;Functionalized coating materials based on inorganic-organic polymers. Thin Solid Films. Vol. 351, 1999, pp. 198-203.
- 17. Liu J., Berg J.C.; An aqueous sol-gel route to prepare organic-inorganic hybrid materials. J.Mater.Chem. Vol. 17, 2007, pp. 4430-4435.
- 18. Chan C. M., Cao G. Z., Fong H., Sarikaya M., Robinson T., Nelson L.; Nanoidentention and adhesion of sol-gel derived hard coating on polyester. J. Mater. Res. Vol. 15, 2000, pp. 148-154.
- 19. Wirasate S., Boerio F. J.; Effect of Adhesion, Film Thickness and Substrate Hardness on the Scratch Behavior of Poly(carbinate) Films. The Journal of Adhesion. Vol. 81, 2005, pp. 509-528.
- 20. Schramm C., Binder W. H., Tessadri R.; Durable Press finishing of Cotton Fabric with 1,2,3,4-Butanetetracarboxylic Acid and TEOS/GPTMS. J. Sol-Gel Sci. Technol. Vol. 29, 2004, pp. 155-165.
- 21. Schramm C., Rinderer B., Binder W. H., Tessadri R., Duelli H.; Treatment of 1,3-dimethylol- 4,5-dihydroxyimidazolidine-2 on finished celulosic materials with tetraethoksysilane or glicydyloxypropyltrimethoksysilane solutions. J. Mater. Sci. Vol. 40, 2005, pp. 1883-1891.
- 22. Schramm C., Binder W. H., Tessadri R., Duelli H.; Modification of cotton fabrics by means of hydrolyzed TEOS, GPTMS and Ti(OPR)3(ACAC) – solutions. Cellulose Chem. Technol., Vol. 39, 2005, pp. 303-324.
- 23. German Patent DE 10343308, 2005; Hennige V., Hying C., Hörpel G.; Surface functionalized composite textile materials.
- 24. Brancatelli G., Colleoni C., Gigli A., Massafra M. R., Paris N., Rosace G.; “Hybrid Nanocomposite Coating by a Sol-Gel Process”, XXII Intern. IFATCC Congress – Stresa(Italy), 2010.
- 25. Draghi L., Lorenzi A., Zaroli U.; “Improving Abrasion Resistance of Silk Fabrics by Sol-Gel Coating”, XXII Intern. IFATCC Congress – Stresa(Italy), 2010.
- 26. S t a n d a r d P N - E N - I S O 1 2 9 4 7 - 1:2000+AC:2006 ”Textiles. Determination of the abrasion resistance of flat fabrics by the Martindale method. Determination of sample failure”
- 27. Standard PN-EN-ISO 12945-2 „Textiles. Determination of the flat fabric surface susceptibility to the formation of fuzz and pilling. Part 2: Modified Martindale method with the use of Nu-Martindale 864 apparatus.
- 28. Standard PN-EN ISO 6330:2002. “Textiles. Domestic Washing and Drying Procedure for Textile Testing. Procedure 5A (40 °C)”.
- 29. Polish Patent Application No P-395765, 2011; Brzeziński S., Kowalczyk D., Malinowska G., Kaleta A., Jasiorski M., Borak B., Baszczuk A.; Production methode of textile materials with increased usage durability.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-657e99fd-13eb-43cd-a49c-6f0fb660654e