Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a model of an electromagnetic system with two levitating magnets is presented. Modeling was performed using the results of experiments. The data obtained make it possible to fit the magnetic forces between two magnets using a 5th order polynomial. The time series show that dry friction constitutes an important part of damping forces. The differential equations of motion consider strong nonlinearities of magnetic and damping forces. These terms cause the nonlinear hardening effect. The energy recovered by magnetic induction is dissipated in the resistors. Numerical simulations show that resistance has an impact on magnet dynamics and energy recovery. From the resonance characteristics obtained, optimal resistance is determined when energy recovery is the highest.
Rocznik
Tom
Strony
art. no. e141721
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- [1] Communication from the commission A Clean Planet for all, A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. [Online] Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773 [Accessed: 12 Nov. 2021].
- [2] J. Kicinski, “Green energy transformation in Poland,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e1362133(1–15), 2021, doi: 10.24425/bpasts.2020.136213.
- [3] P.B. Abadi, D. Darlis, and M.S. Suraatmadja, “Green energy harvesting from human footsteps,” MATEC Web Conf., vol. 197, p. 11015(1–4), 2018, doi: 10.1051/matecconf/201819711015.
- [4] G.D. Pasquale, A. Soma, and F. Fraccarollo, “Comparison between piezoelectric and magnetic strategies for wearable energy harvesting,” J. Phys.: Conf. Ser., vol. 476, p. 012097(1–5), 2013, doi: 10.1088/1742-6596/476/1/012097.
- [5] C. Covani and A. Gontean, “Piezoelectric energy harvesting solutions: a review,” Sensors, vol. 20: p. 3512(1–37), 2020, doi: 10.3390/s20123512.
- [6] H. Elahi, M. Eugeni, and P. Gaudenzi, “A review on mechanisms for piezoeletric-based energy harvesters,” Energies, vol. 11, p. 1850(1–35), 2018, doi: 10.3390/en11071850.
- [7] M.R. Sarker, M.H. Saad, J.L. Olazagoitia, and J. Vinolas, “Review of power convert impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications,” Electronics, vol. 10, p. 1108(1–35), 2021, doi: 10.3390/electronics10091108.
- [8] L. Dal Bo and P. Gardonio, “Comparison between electromagnetic and piezoelectric seismic vibration energy harvesters,” in Proc. of International Conference on Noise and Vibration Engineering (ISMA 2016) and International Conference of Uncertainty in Structural Dynamics (USD 2016), 2016, pp. 681–694.
- [9] M. Ostrowski, B. Blachowski, M. Bochenski, D. Piernikarski, P. Filipek, and W. Janicki, “Design of nonlinear electromagnetic energy harvester equipped with mechanical amplifier and spring bumpers,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, pp. 1373–1383, 2020, doi: 10.24425/bpasts.2020.135384.
- [10] J. Snamina and B. Sapinski, “Energy balance in self-powered MR damper – based vibration reduction system,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, pp. 75–80, 2011, doi: 10.2478/v10175-011-0011-4.
- [11] K. Kecik, A. Mitura, and J. Warminski, “Efficiency analysis of an autoparametric pendulum vibration absorber,” Eksploatacja I Niezawodność – Maintenance and Reliability, vol. 15, pp. 221–224, 2013.
- [12] K. Kecik and A. Mitura, “Energy recovery from a pendulum tuned mass damper with two independent harvesting sources,” Int. J. Mech. Sci., vol. 174, p. 105568(1–16), 2020, doi: 10.1016/j.ijmecsci.2020.105568.
- [13] K. Kecik, A. Mitura, S. Lenci, and J. Warminski, “Energy harvesting from a magnetic levitation system,” Int. J. Non-Linear Mech., vol. 94, pp. 200–206, 2017, doi: 10.1016/j.ijnonlinmec.2017.03.021.
- [14] K. Kecik, A. Mitura, J. Warminski, and S. Lenci, “Foldover effect and energy output from a nonlinear pseudo-maglev harvester,” AIP Conf. Proc., vol. 1922, p. 100009(1–7), 2018, doi: 10.1063/1.5019094.
- [15] A.J. Sneller and B.P. Mann, “On the nonlinear electromechanical coupling between a coil and a oscillating magnet,” J. Phys. D: Appl. Phys., vol.43, p. 295005(1–10), 2010, doi: 10.1088/0022-3727/43/29/295005.
- [16] M. Mosch and G. Fischerauer, “A comparison of methods to measure the coupling coefficient of electromechanical vibration energy harvesters,” Micromachines, vol. 10, p. 0826(1–14), 2019, doi: 10.3390/mi10120826.
- [17] I. Abed, N. Kacem, M.L Bouazizi, and N. Bouhaddi, “Nonlinear 2-dofs vibration energy harvester based on magnetic levitation,” Shock Vib. Aircr. Aerosp. Energy Harvesting, vol. 9, pp. 39–45, 2015.
- [18] P.L. Green, K. Worden, and N.D. Sims, “On the identification and modelling of friction in a randomly excited energy harvester,” J. Sound Vib., vol. 332, pp. 4696-4708, 2013, doi: 10.1016/j.jsv.2013.04.024.
- [19] K. Kecik and A. Mitura, “Effect of variable friction on electromagnetic harvester dynamics,” Eur. Phys. J. Spec. Top., vol. 231, pp. 1433–1441, 2022, doi: 10.1140/epjs/s11734-022-00493-x.
- [20] R. Salamon, H. Kaminski, and P. Fritzkowski, “Estimation of parameters of various damping models in planar motion of a pendulum”, Meccanica, vol. 55, pp. 1655–1677, 2020, doi: 10.1007/s11012-020-01197-z.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-657e05e2-6595-496f-80fb-8b84372a607c