Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, adaptive control for a class of uncertain nonlinear systems with input constraints is addressed. The main goal is to achieve a self-regulator PID controller whose coefficients are adjusted by using some adaptive fuzzy rules. The constraints on the control signal are taken into account as a saturation operator. The stability of the closed-loop system is analytically proved by using the Lyapunov stability theorem. The proposed method is then applied to a surface vessel with uncertain dynamic equations. The simulation results show the effectiveness of the proposed control strategy.
Czasopismo
Rocznik
Tom
Strony
987--1000
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
autor
- Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
autor
- Department of Electrical Engineering, University of Isfahan, Isfahan, Iran
Bibliografia
- 1. Åström K.J., Wittenmark B. , 2013, Adaptive control, Courier Corporation
- 2. Chen M., Ge S.S., How B.V.E., 2010, Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities, Neural Networks, IEEE Transactions, 21, 5, 796-812
- 3. Chen M., Zhou Y., Guo W.W., 2014 Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO, Neurocomputing, 144, 436-447
- 4. Dai S.L., Wang M., Wang C., 2015, Neural learning control of marine surface vessels with guaranteed transient tracking performance, IEEE Transactions on Industrial Electronics, DOI 10.1109/TIE.2015.2504553
- 5. Daly J.M., Tribou M.J., Waslander S.L., 2012, A nonlinear path following controller for an underactuated unmanned surface vessel, IEEE/RSJ International Conference of Intelligent Robots and Systems (IROS), 82-87
- 6. Fang Y., Zergeroglu E., de Queiroz M.S., Dawson D.M., 2004, Global output feedback control of dynamically positioned surface vessels: an adaptive control approach, Mechatronics, 14, 4, 341-356
- 7. Koofigar H.R., Amelian S., 2013, Robust adaptive vibration control for a general class of structures in the presence of time-varying uncertainties and disturbances, Journal of Theoretical and Applied Mechanics, 51, 3, 533-541
- 8. Lee H., 2011, Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems, Fuzzy Systems, IEEE Transactions, 19, 2, 265-275
- 9. Li G., Li W., Hildre H.P., Zhang H., 2015, Online learning control of surface vessels for fine trajectory tracking, Journal of Marine Science and Technology, in press, DOI 10.1007/s00773- -015-0347-9
- 10. Li Y., Li T., Jing X., 2014, Indirect adaptive fuzzy control for input and output constrained nonlinear systems using a barrier Lyapunov function, International Journal of Adaptive Control and Signal Processing, 28, 2, 184-199
- 11. Li Y., Tong S., Li T., 2013, Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation, Neural Computing and Applications, 23, 5, 1207-1216
- 12. Lu L., Yao B., 2014, Online constrained optimization based adaptive robust control of a class of MIMO nonlinear systems with matched uncertainties and input/state constraints, Automatica, 50, 3, 864-873
- 13. Mclain R.B., Henson M.A., Pottmann M., 1999, Direct adaptive control of partially known nonlinear systems, IEEE Transactions on Neural Networks, 10, 3, 714-721
- 14. Montaseri G., Yazdanpanah M.J., 2012 Adaptive control of uncertain nonlinear systems using mixed backstepping and Lyapunov redesign techniques, Communications in Nonlinear Science and Numerical Simulation, 17, 8, 3367-3380
- 15. Munoz D.A., Marquardt W. ˜ , 2013, Robust control design of a class of nonlinear input-and state-constrained systems, Annual Reviews in Control, 37, 2, 232-245
- 16. Petersen I.R., Tempo R., 2014, Robust control of uncertain systems: classical results and recent developments, Automatica, 50, 5, 1315-1335
- 17. Sastry S., 1999, Nonlinear Systems: Analysis, Stability, and Control, 10, New York: Springer
- 18. Shaocheng T., Jiantao T., Tao W., 2000, Fuzzy adaptive control of multivariable nonlinear systems, Fuzzy Sets and Systems, 111, 2, 153-167
- 19. Wang D., Liu D., Li H., Ma H., 2014, Neural-network-based robust optimal control design for a class of uncertain nonlinear systems via adaptive dynamic programming, Information Sciences, 282, 167-179
- 20. Wang H.Q., Chen B., Lin C., 2013a, Adaptive neural tracking control for a class of stochastic nonlinear systems with unknown dead-zone, International Journal of Innovative Computing, Information and Control, 9, 8, 3257-3269
- 21. Wang H., Chen B., Liu X., Liu K., Lin C., 2013b, Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints, Cybernetics, IEEE Transactions, 43, 6, 2093-2104
- 22. Wuxi S., Hongquan W., Furong L., Xiangyu W., 2013, Adaptive fuzzy control for a class of nonlinear systems with input constraint and unknown control direction, Control and Decision Conference (CCDC), 2013 25th Chinese. IEEE
- 23. Xu D., Huang J., 2010, Robust adaptive control of a class of nonlinear systems and its applications, Circuits and Systems I: Regular Papers, IEEE Transactions, 57, 3, 691-702
- 24. Zeinali M., Notash L., 2010, Adaptive sliding mode control with uncertainty estimator for robot manipulators, Mechanism and Machine Theory, 45, 1, 80-90
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6575bdf4-c179-4cab-a30d-3cee6961854b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.