PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of gold with titanium alloy weldability in conditions of a dental technique laboratory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In dental practice, there is necessary to weld gold with titanium under the conditions of a dental technique laboratory, which is difficult. The aim was to assess the weldability of pure gold with the titanium alloy Ti6Al4V using a prosthetic laser welding machine. Design/methodology/approach: Gold wire in a diameter of 0.4 mm made with the use of a jewellery drawbar (GOLDPORT, Szczecin, Poland) was welded to a titanium alloy Ti6Al4V substrate of dental implant abutment screw (MegaGen). Dental laser welding parameters (Bego Laser Star T plus) were 230 V; 6.5 ms; 2.5 Hz; laser spot 0.3 mm, and argon blow. Samples were included in resin, ground (500-4000 SiC), polished (Al2O3 suspension) and etched (Kroll solution) per 20 s before observation under a light microscope. Findings: There were well-welded and poorly joined zones. The discontinuities and voids there were not visible or sparse next to the initial weld point. Dendritic structure at well-welded remelting zones and two-phase microstructure of titanium and Ti3Au phase were found. The heat-affected zone was about of 20 microns. Research limitations/implications: Light microscopy was used, and precise phase identification required further investigations. Weld strength assessment requires further micro-hardness and load-bearing ability tests. Weldability concerns the model system with pure gold. Practical implications: In the case of elements with dimensions below 0.4 mm, the use of a laser with a smaller spot should be considered for better control of the remelting zone and mechanical positioning of the elements in order to stabilize and avoid discontinuities and voids. Originality/value: Prosthetic laser welding with a laser spot about of 0.3 mm allows to obtain well-welded parts of 0.3 mm in diameter under stable stitching conditions and higher than 0.4 mm in dimensions.
Rocznik
Strony
36--41
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Dental Practice Barbara Radecka-Jania, Pl. Zamkowy 2/9, 48-200 Prudnik, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] H. Kappert, K. Bachmann, Pure titanium as an alternative metal in restorative dentistry. I titanium ceramic, 1989 (in German).
  • [2] H. Kappert, K. Bachmann, Pure titanium as an alternative metal in restorative dentistry. II titanium ceramic, 1989 (in German).
  • [3] B. Jedynak, E. Mierzwińska-Nastalska, Titanium – its properties and application in prosthetic dentistry, Dental Forum 1/XLI (2013) 75-78 (in Polish).
  • [4] P.-I. Branemark, Osseointegration and its experimental background, The Journal of Prosthetic Dentistry 50/3 (1983) 399-410. DOI: https://doi.org/10.1016/S0022- 3913(83)80101-2
  • [5] L.A. Dobrzański, The concept of biologically active microporous engineering materials and composite biological-engineering materials for regenerative medicine and dentistry, Archives of Materials Science and Engineering 80/2 (2016) 64-85. DOI: https://doi.org/10.5604/18972764.1229638
  • [6] G. Bobik, J. Żmudzki, K. Majewska, Bone tissue loads around titanium femoral implant and coated with porous layer, Journal of Achievements of Materials and Manufacturing Engineering 90/2 (2018) 77-84. DOI: https://doi.org/10.5604/01.3001.0012.8386
  • [7] J. Żmudzki, W. Walke, W. Chladek, Stresses present in bone surrounding dental implants in FEM model experiments, Journal of Achievements of Materials and Manufacturing Engineering 27/1 (2008) 71-74.
  • [8] G. Bobik, J. Żmudzki, M. Bąk, I. Niedzielska, M. Adamiak, P. Popielski, Personalized implants produced with SLM process, International Journal of Modern Manufacturing Technologies 12/3 (2020) 17-22.
  • [9] L.A. Dobrzanski, L.B. Dobrzański, A. Achtelik- Franczak, J. Dobrzańska, Application Solid Laser- Sintered or Machined Ti6Al4V Alloy in Manufacturing of Dental Implants and Dental Prosthetic Restorations According to Dentistry 4.0 Concept, Processes 8/6 (2020) 664. DOI: https://doi.org/10.3390/pr8060664
  • [10] J. Żmudzki, G. Chladek, C. Krawczyk. Occlusal load transfer in full-contour ceramic implant fixed denture, Archives of Materials Science and Engineering 72/2 (2015) 61-68.
  • [11] S. Lalik, G. Niewielski, Research of welded joints of plated sheets titanium, Materials Engineering 30/5 (2009) 462-465 (in Polish).
  • [12] I. Watanabe, D.S. Topham, Laser welding of cast titanium and dental alloys using argon shielding, Journal of Prosthodontics 15/2 (2006) 102-107. DOI: https://doi.org/10.1111/j.1532-849X.2006.00082.x
  • [13] J. Michalska, M. Sozańska, Susceptibility of duplex stainless steel to localized corrosion after long-term aging at 475°C in sulfides-containing 3.5% NaCl solution, Proceedings of the European Corrosion Congress EUROCORR 2005, Lisbon, Portugal, 2005, 387.
  • [14] W. Szkliniarz, A. Szkliniarz, A. Hernas, S. Roskosz, A. Szczotok, J. Richter, M. Sopicka-Lizer, M. Żelechower, G. Moskal, M. Mikuśkiewicz, M. Stopyra, S.O. Jucha, A. Jasik, D. Niemiec, D. Migas, A.J. Dolata, M. Dyzia, J. Wieczorek, J. Myalski, M. Kozioł, A. Olszówka-Myalska, M. Nowak, M. Sozańska, Materials with special properties, Monograph, Publishing House of the Silesian University of Technology, Gliwice, 2020 (in Polish).
  • [15] A. Perveen, C. Molardi, C. Fornaini, Applications of Laser Welding in Dentistry: A State-of-the-Art Review, Micromachines 9/5 (2018) 209. DOI: https://doi.org/10.3390/mi9050209
  • [16] J.L. Murray, The Au-Ti (Gold-Titanium) system, Bulletin of Alloy Phase Diagrams 4 (1983) 278-283. DOI: https://doi.org/10.1007/BF02868667
  • [17] M. Takahashi, M. Kikuchi, Y. Takada, O. Okuno, T. Okabe, Corrosion behavior and microstructures of experimental Ti-Au alloys, Dental Materials Journal 23/2 (2004) 109-116. DOI: https://doi.org/10.4012/dmj.23.109
  • [18] Y.-R. Lee, M.-K. Han, M.-K. Kim, W.-J. Moon, H.-J. Song, Y.-J. Park, Effect of gold addition on the microstructure, mechanical properties and corrosion behavior of Ti alloys, Gold Bulletin 47 (2014) 153- 160. DOI: https://doi.org/10.1007/s13404-014-0138-9
  • [19] E. Svanidze, T. Besara, M. Fevsi Ozaydin, C.S. Tiwary, J.K. Wang, S. Radhakrishnan, S. Mani, Y. Xin, K. Han, H. Liang, T. Siegrist, P.M. Ajayan, E. Morosan, High hardness in the biocompatible intermetallic compound β-Ti3Au, Science Advances 2/7 (2016) e1600319. DOI: https://doi.org/10.1126/sciadv.1600319
  • [20] Y. Xin, K. Han, E. Svanidze, T. Besara, T. Siegrist, E. Morosan, Microstructure of hard biocompatible Ti1−xAux alloys, Materials Characterization 149 (2019) 133-142. DOI: https://doi.org/10.1016/j.matchar.2019.01.013
  • [21] V. Klimenov, M. Slobodyan, V. Fedorov, I. Strelkova, A. Klopotov, M. Khimich, S. Matrenin, D. Semeykina, Microstructure, phase composition and hardness of Ti–Au cladding deposited on Ti–6Al–4V substrate by electron beam powder bed fusion method, Vacuum 203 (2022) 111289. DOI: https://doi.org/10.1016/j.vacuum.2022.111289
  • [22] V. Klimenov, M. Slobodyan, Y. Ivanov, A. Kiselev, S. Matrenin, Metallurgy of a Ti–Au alloy synthesized by controlled electric resistance fusion, Intermetallics 127 (2020) 106968. DOI: https://doi.org/10.1016/j.intermet.2020.106968
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6571a6ae-8efe-4f43-8356-c443c092313a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.