PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last years, image processing has been an important tool for health care. The analysis of retinal vessel images has become crucial to achieving a better diagnosis and treatment for several cardiovascular and ophthalmological deceases. Therefore, an automatic and accurate procedure for retinal vessel and optic disc segmentation is essential for illness detection. This task is extremely hard and time-consuming, often requiring the assistance of human experts with a high degree of professional skills. Several retinal vessel segmentation methods have been developed with satisfactory results. Nevertheless, most of such techniques present a poor performance mainly due to the complex structure of vessels in retinal images. In this paper, an accurate methodology for retinal vessel and optic disc segmentation is presented. The proposed scheme combines two different techniques: the Lateral Inhibition (LI) and the Differential Evolution (DE). The LI scheme produces a new image with enhanced contrast between the background and retinal vessels. Then, the DE algorithm is used to obtain the appropriate threshold values through the minimization of the cross-entropy function from the enhanced image. To evaluate the performance of the proposed approach, several experiments over images extracted from STARE, DRIVE, and DRISHTI-GS databases have been conducted. Simulation results demonstrate a high performance of the proposed scheme in comparison with similar methods reported in the literature.
Twórcy
  • Departamento de Electrónica, Universidad de Guadalajara, México
  • Departamento de Electrónica, Universidad de Guadalajara, México
autor
  • Departamento de Electrónica, Universidad de Guadalajara, México
  • Departamento de Electrónica, Universidad de Guadalajara, México
  • Departamento de Electrónica, Universidad de Guadalajara, México
  • Departamento de Electrónica, Universidad de Guadalajara, México
  • Departamento de Electrónica, Universidad de Guadalajara, México
Bibliografia
  • [1] Qian Zhao Y, Hong Wang X, Fang Wang X, Shih FY. Retinal vessels segmentation based on level set and region growing. Pattern Recognit 2014;47(7):2437–46.
  • [2] Stanton AV, et al. Vascular network changes in the retina with age and hypertension. J Hypertens 1995;13(12):1724–8.
  • [3] Skovborg F, Nielsen AV, Lauritzen E, Hartkopp O. Diameters of the retinal vessels in diabetic and normal subjects. Diabetes 1969;18(5):292–8.
  • [4] Martinez-Perez ME, Hughes AD, Thom SA, Bharath AA, Parker KH. Segmentation of blood vessels from red-free and fluorescein retinal images. Med Image Anal 2007;11(1):47–61.
  • [5] Lázár I, Hajdu A. Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 2015;66:209–21.
  • [6] Fraz MM, et al. Blood vessel segmentation methodologies in retinal images—a survey. Comput Methods Programs Biomed 2012;108(1):407–33.
  • [7] Kirbas C, Quek F. A review of vessel extraction techniques and algorithms; 2003.
  • [8] Franklin SW, Rajan SE. Retinal vessel segmentation employing ANN technique by Gabor and moment invariants-based features. Appl Soft Comput 2014;22:94–100.
  • [9] Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 2015;149:708–17.
  • [10] Kande GB, Subbaiah PV, Savithri TS. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J Med Syst 2010;34(5):849–58.
  • [11] Lupascu CA, Tegolo D. Automatic unsupervised segmentation of retinal vessels using self-organizing maps and K-means clustering. Berlin, Heidelberg: Springer; 2011. p. 263–74.
  • [12] Yin Y, Adel M, Bourennane S. Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. Comput Math 2013.
  • [13] Zhang J, Li H, Nie Q, Cheng L. A retinal vessel boundary tracking method based on Bayesian theory and multi-scale line detection. Comput Med Imaging Graph 2014;38(6):517–25.
  • [14] Zhang Y, Hsu W, Lee ML. Detection of Retinal Blood Vessels Based on Nonlinear Projections. J Signal Process Syst 2009;55(1–3):103–12.
  • [15] Khdhair N, Abbadi E, Hamood E, Saadi A. Blood vessels extraction using mathematical morphology. J Comput Sci Publ Online 2013;9(910):1389–95.
  • [16] Hassan G, El-Bendary N, Hassanien AE, Fahmy A, Shoeb AM, Snasel V, et al. Retinal blood vessel segmentation approach based on mathematical morphology. Procedia Comput Sci 2015;65:612–22.
  • [17] Kumar D, Pramanik A, Kar SS, Maity SP. Retinal blood vessel segmentation using matched filter and Laplacian of Gaussian. 2016 International Conference on Signal Processing and Communications (SPCOM). 2016;1–5.
  • [18] Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 2010;40(4):438–45.
  • [19] Ben Abdallah M, et al. Automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness. Int J Biomed Imaging 2015;2015.
  • [20] Almotiri J, Elleithy K, Elleithy A. A multi-anatomical retinal structure segmentation system for automatic eye screening using morphological adaptive fuzzy thresholding. IEEE J Transl Eng Heal Med 2018;6:1–23.
  • [21] Ryu H, Moon H, Browatzki B, Wallraven C. Retinal vessel detection using deep learning: a novel directnet architecture. Korean J Vis Sci 2018;20(2):151–9.
  • [22] Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 2018;112:229–42.
  • [23] Kaur J, Mittal D. A generalized method for the detection of vascular structure in pathological retinal images. Biocybern Biomed Eng 2017;37(1):184–200.
  • [24] Jiang Z, Yepez J, An S, Ko S. Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 2017.
  • [25] Khakzar M, Pourghassem H. A retinal image authentication framework based on a graph-based representation algorithm in a two-stage matching structure. Biocybern Biomed Eng 2017;37(4):742–59.
  • [26] GeethaRamani R, Balasubramanian L. Retinal blood vessel segmentation employing image processing and data mining techniques for computerized retinal image analysis. Biocybern Biomed Eng 2016;36(1):102–18.
  • [27] Aslani S, Sarnel H. A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 2016;30:1–12.
  • [28] Christodoulidis A, Hurtut T, Ben Tahar H, Cheriet F. A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Comput Med Imaging Graph 2016;52:28–43.
  • [29] Cuevas E, Sención-Echauri F, Zaldivar D, Pérez-Cisneros M. Multi-circle detection on images using artificial bee colony (ABC) optimization. Soft Comput 2012;16(2):281–96.
  • [30] Oliva D, Cuevas E. A medical application: blood cell segmentation by circle detection. Cham: Springer; 2017. p. 135–57.
  • [31] Oliva D, Hinojosa S, Cuevas E, Pajares G, Avalos O, Gálvez J. Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Syst Appl 2017;79:164–80.
  • [32] González A, Cuevas E, Fausto F, Valdivia A, Rojas R. A template matching approach based on the behavior of swarms of locust. Appl Intell 2017;1–12.
  • [33] Valdivia-Gonzalez A, Zaldívar D, Fausto F, Camarena O, Cuevas E, Perez-Cisneros M. A states of matter search-based approach for solving the problem of intelligent power allocation in plug- in hybrid electric vehicles. Energies 2017;10(1):92.
  • [34] Yang Y, Wang Z, Yang B, Jing Z, Kang Y. Multiobjective optimization for fixture locating layout of sheet metal part using SVR and NSGA-II. Math Probl Eng 2017;2017:1–10.
  • [35] Zhang H, Dai Z, Zhang W, Zhang S, Wang Y, Liu R. A new energy-aware flexible job shop scheduling method using modified biogeography-based optimization. Math Probl Eng 2017;2017:1–12.
  • [36] Pang C, Huang S, Zhao Y, Wei D, Liu J. Sensor network disposition facing the task of multisensor cross cueing. Math Probl Eng 2017;2017:1–8.
  • [37] Kóczy LT, Földesi P, Tüu-Szabó B. An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. Int J Intell Syst 2017;32(8):862–76.
  • [38] Céspedes-Mota A, et al. Optimization of the distribution and localization of wireless sensor networks based on differential evolution approach. Math Probl Eng 2016;2016:1–12.
  • [39] Lai L, Ji Y-D, Zhong S-C, Zhang L. Sequential parameter identification of fractional-order duffing system based on differential evolution algorithm. Math Probl Eng 2017;2017:1–13.
  • [40] Bhattacharyya S, Konar A, Tibarewala DN. A differential evolution based energy trajectory planner for artificial limb control using motor imagery EEG signal. Biomed Signal Process Control 2014;11(1):107–13.
  • [41] Elsayed S, Sarker R. Differential evolution framework for big data optimization. Memetic Comput 2016;8(1):17–33.
  • [42] Rahebi J, Hardalaç F. Retinal blood vessel segmentation with neural network by using gray-level co-occurrence matrix-based features. J Med Syst 2014;38(8):85.
  • [43] Zheng Y, Kwong MT, Maccormick IJC, Beare NAV, Harding SP. A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms. PLoS One 2014;9(4).
  • [44] Bai X, Zhou F, Xue B. Image enhancement using multi scale image features extracted by top-hat transform. Opt Laser Technol 2012;44(2):328–36.
  • [45] Salazar-Gonzalez A, Kaba D, Li Y, Liu X. Segmentation of the blood vessels and optic disk in retinal images. IEEE J Biomed Heal Inf 2014;18(6):1874–86.
  • [46] Soares JVB, Leandro JJG, Cesar RM, Jelinek HF, Cree MJ. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 2006;25(9):1214–22.
  • [47] Bai X, Zhou F. Multi structuring element top-hat transform to detect linear features. IEEE 10th International Conference on Signal Processing Proceedings; 2010;877–80.
  • [48] Hartline HK. The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol Content 1938;121(2):400–15.
  • [49] Li B, Li Y, Cao H, Salimi H. Image enhancement via lateral inhibition: an analysis under illumination changes. Optik (Stuttg) 2016;127(12):5078–83.
  • [50] Fang Z, Dawei Z, Ke Z. Image pre-processing algorithm based on lateral inhibition. 2007 8th International Conference on Electronic Measurement and Instruments; 2007. 2-701-2–705.
  • [51] Cormack RH, Coren S, Girgus JS. Seeing is deceiving: the psychology of visual illusions. Am J Psychol 1979;92(3):557.
  • [52] Liu F, Duan H, Deng Y. A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Opt - Int J Light Electron Opt 2012;123(21):1955–60.
  • [53] Wang X, Duan H, Luo D. Cauchy biogeography-based optimization based on lateral inhibition for image matching. Optik (Stuttg) 2013;124(22):5447–53.
  • [54] Kullback S. Information theory and statistics. Dover Publications; 1968.
  • [55] Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recognit 1993;26(4):617–25.
  • [56] R. Storn, K. P.-J. of global optimization, and undefined 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Springer.
  • [57] Schmitt LM. Theory of genetic algorithms. Theor Comput Sci 2001;259(1):1–61.
  • [58] Yang X-S. Nature-inspired optimization algorithms. Nature-inspired optimization algorithms; 2014.
  • [59] Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23 (4):501–9.
  • [60] Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 2000;19 (3):203–10.
  • [61] Sivaswamy J, Krishnadas SR, Datt Joshi G, Jain M, Syed Tabish AU. Drishti-GS: retinal image dataset for optic nerve head(ONH) segmentation; 2014;53–6.
  • [62] Jiang X, Mojon D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans Pattern Anal Mach Intell 2003;25(1):131–7.
  • [63] Câmara Neto L, Ramalho GLB, Rocha Neto JFS, Veras RMS, Medeiros FNS. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 2017;78(no. C):182–92.
  • [64] Rezaee K, Haddadnia J, Tashk A. Optimized clinical segmentation of retinal blood vessels by using combination of adaptive filtering, fuzzy entropy and skeletonization. Appl Soft Comput J 2017;52:937–51.
  • [65] Rodrigues LC, Marengoni M. Segmentation of optic disc and blood vessels in retinal images using wavelets, mathematical morphology and Hessian-based multi-scale filtering. Biomed Signal Process Control 2017;36:39–49.
  • [66] Marín D, Aquino A, Gegundez-Arias ME, Bravo JM. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 2011;30(1):146–58.
  • [67] Wong DWK, et al. Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008;2266–9.
  • [68] Cheng J, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 2013;32(6):1019–32.
  • [69] Sedai S, Roy PK, Mahapatra D, Garnavi R. Segmentation of optic disc and optic cup in retinal fundus images using shape regression. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016;3260–4.
  • [70] Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph 2017;55:28–41.
  • [71] Sta̧por K, Switonski A, Chrastek R, Michelson G. Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis. Berlin, Heidelberg: Springer; 2004. p. 41–8.
  • [72] J. M. Seo, K. K. Kim, J. H. Kim, K. S. Park, H. Chung, Measurement of ocular torsion using digital fundus image, in The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3, 1711–1713.
  • [73] Bharkad S. Automatic segmentation of optic disk in retinal images. Biomed Signal Process Control 2017;31:483–98.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-656d699d-0d37-412b-8b97-f347739d9bb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.