Tytuł artykułu
Identyfikatory
Warianty tytułu
Materials with bioactive compounds that promote collagen synthesis in the skin. Review and application
Języki publikacji
Abstrakty
W przeglądzie omówiono najnowsze osiągnięcia w zakresie wykorzystania wybranych substancji, takich jak astaksantyna, siarczan chondroityny, kwas hialuronowy, kwas askorbinowy, kwas ferulowy oraz argirelina, w projektowaniu biomateriałów oraz produktów dermatologicznych i kosmetycznych. Związki te wykazują działanie przeciwutleniające, immunomodulujące, nawilżające i regeneracyjne, często wykorzystywane są jako składniki hydrożeli, nanonośników lub biotuszy do druku 3D. Przeanalizowano zarówno ich indywidualne właściwości, jak i potencjał synergicznego działania w kontekście poprawy struktury i funkcji skóry. Podkreślono także znaczenie odpowiedniego doboru matrycy biomateriału dla skutecznego uwalniania substancji czynnej oraz stymulacji produkcji kolagenu in vitro i in vivo. Wyniki te podkreślają potencjał terapeutyczny wielofunkcyjnych systemów bioaktywnych w dermatologii estetycznej i medycynie regeneracyjnej.
A review, with. 80 refs., on current advancements in the use of bioactive compounds, such as astaxanthin, chondroitin sulfate, hyaluronic acid, ascorbic acid, ferulic acid, and argireline, in materials designed to enhance collagen synthesis. These compounds exhibit antioxidant, antiinflammatory, moisturizing, and regenerative properties, and are increasingly integrated into hydrogels, nanocarriers, and 3D-printed scaffolds. Both, their individual and synergistic effects on fibroblast activation and collagen gene expression through signaling pathways such as TGF-β and MAP were discussed. Additionally, emphasis on the role of the biomaterial matrix in modulating compound release and supporting tissue-specific responses in vitro and in vivo was placed. These findings underline the therapeutic potential of multifunctional bioactive systems in aesthetic dermatology and regenerative medicine.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 80 poz., fig.
Twórcy
autor
- Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Inżynierii Materiałowej i Fizyki, Katedra Inżynierii Materiałowej
autor
- Politechnika Krakowska im. Tadeusza Kościuszki, Szkoła Doktorska PK, Wydział Inżynierii Materiałowej i Fizyki, Katedra Inżynierii Materiałowej
- Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Inżynierii Materiałowej i Fizyki, Katedra Inżynierii Materiałowej
autor
- Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Inżynierii Materiałowej i Fizyki, Katedra Inżynierii Materiałowej
autor
- Politechnika Krakowska im. Tadeusza Kościuszki, Wydział Inżynierii Materiałowej i Fizyki, Katedra Inżynierii Materiałowej
Bibliografia
- [1] Qi L., Zhang C., Wang B., Yin J., Yan S.: Progress in hydrogels for skin wound repair. Macromol. Biosci. 22 (7) (2022) 1.
- [2] Zorina A., Zorin V., Kudlay D., Kopnin P.: Molecular mechanisms of changes in homeostasis of the dermal extracellular matrix. Both involutional and mediated by ultraviolet radiation. Int. J. Mol. Sci. 23 (12) (2022) 6655.
- [3] Parrado C., Mercado-Saenz S., Perez-Davo A., Gilaberte Y., Gonzalez S., Juarranz A.: Environmental stressors on skin aging. Mechanistic insights. Front. Pharmacol. 10 (2019) 1.
- [4] Biomaterials Market: Growth, Size, Share and Trends (2024). https:// www.marketsandmarkets.com/Market-Reports/biomaterials-393.html.
- [5] Hussen N.H., Abdulla S.K., Ali N.M., Ahmed V.A., Hasan A.H., Qadir E.E.: Role of antioxidants in skin aging and the molecular mechanism of ROS. A comprehensive review. Asp. Mol. Med. (2025) 100063. https://doi. org/10.1016/j.amolm.2025.100063.
- [6] Salih A.R.C., Farooqi H.M.U., Amin H., Karn P.R., Meghani N., Nagendran S.: Hyaluronic acid. Comprehensive review of a multifunctional biopolymer. Futur. J. Pharm. Sci. 10 (1) (2024). https://doi.org/10.1186/ s43094-024-00636-y.
- [7] Wolski T., Kędzia B.: Farmakoterapia skóry. Cz. 1. Budowa i fizjologia skóry. Postępy Fitoter. 20 (1) (2019) 61.
- [8] Borojevic R.: Chapter 5. Resident stem cell. Resid. Stem. Cells Regen. Ther. (2013) 416012,
- [9] Marrapodi R., Bellei B.: The keratinocyte in the picture Cutaneous melanoma microenvironment. Cancers (Basel) 16 (5) (2024).
- [10] Hsu Y.C., Fuchs E.: Building and maintaining the skin. Cold Spring Harb. Perspect. Biol. 14 (7) (2022).
- [11] Celleno L., Tamburi F.: Structure and function of the skin. Nutritional cosmetics. Beauty from within (2009) 3.
- [12] Ziadlou R., Pandian G.N., Hafner J., Akdis C.A., Stingl G., Maverakis E. et al.: Subcutaneous adipose tissue. Implications in dermatological diseases and beyond. Allergy Eur. J. Allergy Clin. Immunol. (2024) 3310.
- [13] Riekki R., Jukkola A., Sassi M.L., Höyhtyä M., Kallioinen M., Risteli J. et al.: Modulation of skin collagen metabolism by irradiation. Collagen synthesis is increased in irradiated human skin. Br. J. Dermatol. 142 (5) (2000) 874.
- [14] Wang H.: A review of the effects of collagen treatment in clinical studies. Polymers (Basel) 13 (22) (2021).
- [15] Sun Y., Li L., Wang J., Liu H., Wang H.: Emerging landscape of Osteogenesis imperfecta pathogenesis and therapeutic approaches. ACS Pharmacol. Transl. Sci.7 (1) (2024) 72.
- [16] Wang S., Li F., Feng X., Feng M., Niu X., Jiang X. et al.: Promoting collagen synthesis. A viable strategy to combat skin ageing. J. Enzyme Inhib. Med. Chem. 40 (1) (2025). https://doi.org/10.1080/14756366.2025.2488821.
- [17] Rosset E.M., Trombetta-eSilva J., Hepfer G., Yao H., Bradshaw A.D.: SPARC and the N-propeptide of collagen I influence fibroblast proliferation and collagen assembly in the periodontal ligament. PLoS One 12 (2) (2017) 1.
- [18] Guo L., Xiang W., Pan Z., Gu H., Jiang X.: Post-translational modifications of collagen and its related diseases in metabolic pathways. Acta Pharm. Sin. B 15 (4) (2025).
- [19] Tvaroška I.: Glycosylation modulates the structure and functions of collagen. A review. Molecules 29 (7) (2024).
- [20] Eyre D.R., Weis M.A., Rai J.: Analyses of lysine aldehyde cross-linking in collagen reveal that the mature cross-link histidinohydroxylysinonorleucine is an artifact. J. Biol. Chem. 294 (16) (2019) 6578. http://dx.doi. org/10.1074/jbc.RA118.007202.
- [21] Parisenti J., Beirão L.H., Maraschin M., Mouriño J.L., Do Nascimento Vieira F., Bedin L.H. et al.: Pigmentation and carotenoid content of shrimp fed with Haematococcus pluvialis and soy lecithin. Aquac. Nutr. 17 (2) (2011).
- [22] Lin Y.J., Chang J.J., Huang H.T., Lee C.P., Hu Y.F., Wu M.L. et al.: Improving red-color performance, immune response and resistance to Vibrio parahaemolyticus on white shrimp Penaeus vannamei by an engineered astaxanthin yeast. Sci. Rep. 13 (1) (2023) 1. https://doi.org/10.1038/ s41598-023-29225-4.
- [23] Chung B.Y., Park S.H., Yun S.Y., Yu D.S., Lee Y.B.: Astaxanthin protects ultraviolet B-induced oxidative stress and apoptosis in human keratinocytes via intrinsic apoptotic pathway. Ann. Dermatol. 34 (2) (2022) 125.
- [24] Yoon H.S., Cho H.H., Cho S., Lee S.R., Shin M.H., Chung J.H.: Supplementating with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and -12 expression. A comparative study with placebo. J. Med. Food. 17 (7) (2014) 810.
- [25] Giovanna S., Lima M., Caroline M., Cavalcanti L., Oliveira S., Solisio C. et al.: Astaxanthin delivery systems for skin application. A review (2021) 1. https://doi.org/10.3390/md19090511.
- [26] Davinelli S., Nielsen M.E., Scapagnini G.: Astaxanthin in skin health, repair, and disease. A comprehensive review. Nutrients 10 (4) (2018) 1.
- [27] Zhong Y., Lin Q., Yu H., Shao L., Cui X., Pang Q. et al.: Construction methods and biomedical applications of PVA-based hydrogels. Front. Chem. 12 (2024) 1.
- [28] Zhang H., Lin L., Ren L., Liu Y., Song R.: Characterization of CS/PVA/GO electrospun nanofiber membrane with astaxanthin. J. Appl. Polym. Sci. 138 (14) (2021) 1.
- [29] Li P., Xu T., Dang X., Shao L., Yan L., Yang X. et al.: Improving astaxanthin- -loaded chitosan/polyvinyl alcohol/graphene oxide nanofiber membranes and their application in periodontitis. Int. J. Biol. Macromol. 258 (P2) (2024) 128980. https://doi.org/10.1016/j.ijbiomac.2023.128980.
- [30] Monavari M., Homaeigohar S., Medhekar R., Nawaz Q., Monavari M., Zheng K. et al.: A 3D-printed wound-healing material composed of alginate dialdehyde-gelatin incorporating astaxanthin and borate bioactive glass microparticles. ACS Appl. Mater. Interfaces 15 (44) (2023) 50626.
- [31] Goshtasbi H., Abdolahinia E.D., Fathi M., Movafeghi A., Omidian H., Barar J. et al.: Astaxanthin-loaded alginate-chitosan gel beads activate Nrf2 and pro-apoptotic signalling pathways against oxidative stress. J. Microencapsul. 41 (2) (2024) 140.
- [32] Choi B.Y., Chalisserry E.P., Kim M.H., Kang H.W., Choi I.W., Nam S.Y.: The influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in gelatin-methacryloyl (GelMA) hydrogels. Materials (Basel) 12 (15) (2019).
- [33] Renard E., Chadjichristos C., Kypriotou M., Beauchef G., Bordat P., Dompmartin A. et al.: Chondroitin sulphate decreases collagen synthesis in normal and scleroderma fibroblasts through a Smad-independent TGF-β pathway - Implication of C-Krox and Sp1. J. Cell Mol. Med. 12 (6B) (2008) 2836.
- [34] Kilmer C.E., Walimbe T., Panitch A., Liu J.C.: Incorporation of a collagen- -binding chondroitin sulfate molecule to a collagen type I and II blend hydrogel for cartilage tissue engineering. ACS Biomater. Sci. Eng. 8 (3) (2022) 1247.
- [35] Plaas A.H.K., Moran M.M., Sandy J.D., Hascall V.C.: Aggrecan and hyaluronan. The infamous cartilage polyelectrolytes. Then and now. Adv. Exp. Med. Biol. 1402 (2023) 3.
- [36] Ouyang Z., Dong L., Yao F., Wang K., Chen Y., Li S. et al.: Cartilage-related collagens in osteoarthritis and rheumatoid arthritis. From pathogenesis to therapeutics. Int. J. Mol. Sci. 24 (12) (2023).
- [37] Wang W., Shi L., Qin Y., Li F.: Research and application of chondroitin sulfate/dermatan sulfate-degrading enzymes. Front. Cell Dev. Biol. 8 (2020).
- [38] Ahmad S.M., Hameed H., Al-Hussain S.A., Khan M.A., Tariq U., Paiva- -Santos A.C. et al.: Chondroitin sulfate. An ideal biomaterial based scaffolds for cartilage regeneration and its therapeutic potential. Carbohydr. Polym. Technol. Appl. 10 (2025).
- [39] Kyburz K.A., Anseth K.S.: Synthetic mimics of the extracellular matrix. How simple is complex enough? Ann. Biomed. Eng. 43 (3) (2015) 489.
- [40] Wang T.W., Sun J.S., Wu H.C., Tsuang Y.H., Wang W.H., Lin F.H.: The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27 (33) (2006) 5689.
- [41] Wang W., Shi L., Qin Y., Li F., Li Z., Li Q. et al.: Research and application of chondroitin sulfate/dermatan sulfate-degrading enzymes. Front. Bioeng. Biotechnol. 12 (2024) 1.
- [42] Chylińska N., Maciejczyk M.: Hyaluronic acid and skin. Its role in aging and wound-healing processes. Gels 11 (4) (2025) 15.
- [43] De Tollenaere M., Meunier M., Lapierre L., Chapuis E., Guilleret A., Harrison I. et al.: High molecular weight hyaluronic acid vectorised with clay provides long-term hydration and reduces skin brightness. Skin Res. Technol. 30 (4) (2024) 1.
- [44] Xing H., Pan X., Hu Y., Yang Y., Zhao Z., Peng H. et al.: High molecular weight hyaluronic acid-liposome delivery system for efficient transdermal treatment of acute and chronic skin photodamage. Acta Biomater. 182 (2024) 171.
- [45] Huang J., Xue J., Huang J., Zhang X., Zhang H., Du L. et al.: An injectable hyaluronic acid/lithium calcium silicate soft tissue filler with vascularization and collagen regeneration. Bioact. Mater. 44 (2025) 256. https:// doi.org/10.1016/j.bioactmat.2024.10.014.
- [46] Remaggi G., Bottari B., Bancalari E., Catanzano O., Neviani E., Elviri L.: Lactobacillus delbrueckii subsp. bulgaricus derivatives for 3D printed alginate/hyaluronic acid self-crosslinking hydrogels. Manufacturing and wound healing potential. Int. J. Biol. Macromol. 242 (P1) (2023) 124454. https://doi.org/10.1016/j.ijbiomac.2023.124454.
- [47] Gruppuso M., Turco G., Marsich E., Porrelli D.: Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. Biomater. Adv. 154 (2023) 213613. https:// doi.org/10.1016/j.bioadv.2023.213613.
- [48] Dan X., Li S., Chen H., Xue P., Liu B., Ju Y. et al.: Tailoring biomaterials for skin anti-aging. Mater. Today Bio. 28 (2024) 101210. https://doi. org/10.1016/j.mtbio.2024.101210.
- [49] Lizarazo-Fonseca L., Correa-Araujo L., Prieto-Abello L., Camacho- -Rodríguez B., Silva-Cote I.: In vitro and in vivo evaluation of electrospun poly (ε-caprolactone)/collagen scaffolds and Wharton’s jelly mesenchymal stromal cells (hWJ-MSCs) constructs as potential alternative for skin tissue engineering. Regen. Ther. 24 (2023) 11. https://doi.org/10.1016/j. reth.2023.05.005.
- [50] Ghahremani-Nasab M., Del Bakhshayesh A.R., Akbari-Gharalari N., Mehdipour A.: Biomolecular and cellular effects in skin wound healing: the association between ascorbic acid and hypoxia-induced factor. J. Biol. Eng. 17 (1) (2023) 1. https://doi.org/10.1186/s13036-023-00380-6.
- [51] Pullar J.M., Carr A.C., Vissers M.C.M.: The roles of vitamin C in skin health. Nutrients 9 (8) (2017).
- [52] Nusgens B.V., Humbert P., Rougier A., Colige A.C., Haftek M., Lambert C.A. et al.: Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J. Invest. Dermatol. 116 (6) (2001) 853.
- [53] Farris P.K.: Topical vitamin C. A useful agent for treating photoaging and other dermatologic conditions. Dermatol. Surg. 31 (7 Pt 2) (2005) 814.
- [54] Zhang J.Y., Doll B.A., Beckman E.J., Hollinger J.O.: Three-dimensional biocompatible ascorbic acid-containing scaffold for bone tissue engineering. Tissue Eng. 9 (6) (2003) 1143.
- [55] Dikici S.: Ascorbic acid enhances the metabolic activity, growth and collagen production of human dermal fibroblasts growing in three-dimensional (3D) culture. Gazi. Univ. J. Sci. 36 (4) (2023) 1625.
- [56] Zhang Z., Huang C., Guan S., Wang L., Yin H., Yin J. et al.: Hybrid gelatin- -ascorbyl phosphate scaffolds accelerate diabetic wound healing via ROS scavenging, angiogenesis and collagen remodeling. Biomater. Adv. 158 (2024). https://doi.org/10.1016/j.bioadv.2024.213779.
- [57] Lee J.E., Boo Y.C.: Combination of glycinamide and ascorbic acid synergistically promotes collagen production and wound healing in human dermal fibroblasts. Biomedicines 10 (5) (2022) 80.
- [58] Ryu T.K., Lee H., Yon D.K., Nam D.Y., Lee S.Y., Shin B.H. et al.: The antiaging effects of a product containing collagen and ascorbic acid: In vitro, ex vivo, and pre-post intervention clinical trial. PLoS One 17 (12) (2022) 1. http://dx.doi.org/10.1371/journal.pone.0277188.
- [59] Wu D., Zheng K., Yin W., Hu B., Yu M., Yu Q. et al.: Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact. Mater. 36 (2024) 317.
- [60] Boz H.: Ferulic acid in cereals. A review. Czech J. Food Sci. 33 (1) (2015) 1. https://doi.org/10.17221/401/2014-CJFS.
- [61] Ou S., Kwok K.C.: Ferulic acid. Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric.84 (11) (2004) 1261.
- [62] Kumar N., Pruthi V.: Potential applications of ferulic acid from natural sources. Biotechnol. Reports 4 (1) (2014) 86. http://dx.doi.org/10.1016/j. btre.2014.09.002.
- [63] Li D., Rui Y.-X., Guo S.-D., Luan F., Liu R., Zeng N.: Ferulic acid. A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 284 (2021) 1.
- [64] de Paiva L.B., Goldbeck R., dos Santos W.D., Squina F.M.: Ferulic acid and derivatives: Molecules with potential application in the pharmaceutical field. Brazilian J. Pharm. Sci. 49 (3) (2013) 395.
- [65] Romana-Souza B., Silva-Xavier W., Monte-Alto-Costa A.: Topical application of a commercially available formulation of vitamin C stabilized by vitamin E and ferulic acid reduces tissue viability and protein synthesis in ex vivo human normal skin. J. Cosmet. Dermatol. 19 (11) (2020) 2965.
- [66] Huang C., Huangfu C., Bai Z., Zhu L., Shen P., Wang N. et al.: Multifunctional carbomer based ferulic acid hydrogel promotes wound healing in radiation-induced skin injury by inactivating NLRP3 inflammasome. J. Nanobiotechnol. 22 (1) (2024).
- [67] Li S., Ma J., Li J., Qu X., Lei B.: Sprayable self-assembly multifunctional bioactive poly(ferulic acid) hydrogel for rapid MRSA infected wound repair. J. Biomed. Mater. Res. Part A 112 (3) (2024) 390.
- [68] Wang C.Y., Hsiao C.Y., Tsai K.L., Cheng Y.H.: Injectable thermosensitive chitosan-based hydrogel containing ferulic acid for treating peripheral arterial disease. J. Tissue Eng. Regen. Med. 14 (10) (2020) 1438.
- [69] Cheng Y.H., Yang S.H., Liu C.C., Gefen A., Lin F.H.: Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate. Carbohydr. Polym. 92 (2) (2013) 1512.
- [70] Anjali S., Resmi R., Saravana R.P., Joseph R., Saraswathy M.: Ferulic acid incorporated anti-microbial self cross-linking hydrogel: A promising system for moderately exudating wounds. J. Drug Deliv. Sci. Technol. 73 (2022) 1.
- [71] Słota D., Bańkosz M.: Bioprinting using alginate-based bioinks. Inż. Mater. 1 (4–5) (2021) 14.
- [72] Bider F., Klotschan A., Kuth S., Weisbach V., Boccaccini A.R.: Ferulic acid and human platelet lysate incorporated alginate dialdehyde-gelatin 3D (bio)printable hydrogels with biological activity. J. Appl. Polym. Sci. 141 (39) (2024) 1.
- [73] Bider F., Miola M., Clejanu C.E., Götzelmann J., Kuth S., Vernè E. et al.: 3D bioprinting of multifunctional alginate dialdehyde (ADA)–gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid Int. J. Biol. Macromol. 257 (2024).
- [74] Pintea A., Manea A., Pintea C., Vlad R.A., Bîrsan M., Antonoaea P. et al.: Peptides. Emerging candidates for the prevention and treatment of skin senescence. A review. Biomolecules 15 (1) (2025) 1.
- [75] Nguyen T.T.M., Yi E.J., Jin X., Zheng Q., Park S.J., Yi G.S. et al.: Sustainable dynamic wrinkle efficacy. Non-invasive peptides as the future of botox alternatives. Cosmetics 11 (4) (2024).
- [76] Schagen S.K:. Topical peptide treatments with effective anti-aging results. Cosmetics 4 (2) (2017).
- [77] Morganti P., Bruno C., Guarneri F., Cardillo A., Del Ciotto P., Valenzano F.: Role of topical and nutritional supplement to modify the oxidative stress. Int. J. Cosmet. Sci. 24 (6) (2002) 331.
- [78] An J.H., Lee H.J., Yoon M.S., Kim D.H.: Anti-wrinkle efficacy of cross-linked hyaluronic acid-based microneedle patch with acetyl hexapeptide-8 and epidermal growth factor on Korean skin. Ann. Dermatol. 31 (3) (2019) 263.
- [79] Qu Q., Cui Z., Jiang F., Liu C.: Strength and targeted-sustained release properties of sodium alginate-polyacrylamide hydrogel for anti-wrinkle eye-patch. J. Drug Deliv. Sci. Technol. 100 (2024) 106065. https://doi. org/10.1016/j.jddst.2024.106065.
- [80] Lim S.H., Kathuria H., Amir M.H.B., Zhang X., Duong H.T.T., Ho P.C.L. et al.: High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide. J. Control. Release. 329 (2021). https://doi.org/10.1016/j.jconrel.2020.10.021.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-656b6e06-81f1-4370-af9c-daf9a4d7557b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.