Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Efektywność usuwania surfaktantów anionowych z wody przy zastosowaniu promieniowania UVC i zaawansowanego utleniania w układzie H2O2/UVC
Języki publikacji
Abstrakty
Surfactants after their use are discharged into aquatic ecosystems. These compounds may be harmful to fauna and flora in surface waters or can be toxic for microorganisms of the activated sludge or biofilm in WWTP. In order to determine effectiveness of different advanced oxidation processes on the degradation of surfactants, in this study the degradation of anionic surfactants in aqueous solution using photolysis by 254 nm irradiation and by advanced oxidation process in a H2O2/UVC system was investigated. Two representatives of anionic surfactants, linear alkyl benzene sulphonate (LAS-R11-14) and ether carboxylic derivate (EC-R12-14E10) were tested. The influence of pH, initial surfactant concentration and dose of hydrogen peroxide on the degradation was also studied. Results show outstanding effectiveness of the H2O2/UVC system in the removal of surfactant from aqueous solutions.
Surfaktanty, podobnie jak większość tego typu substancji chemicznych, po wykorzystaniu trafi ają do środowiska wodnego. Związki te mogą stwarzać zagrożenie dla fl ory i fauny zasiedlającej wody powierzchniowe, jak również mogą działać toksycznie na mikroorganizmy znajdujące się w osadzie czynnym w oczyszczalniach ścieków. W niniejszej pracy przedstawiono wyniki badań degradacji wybranych surfaktantów anionowych w środowisku wodnym przy zastosowaniu promieniowania UVC i zaawansowanego utleniania w układzie H2O2/UVC. Zbadano wpływ następujących parametrów reakcyjnych: odczyn środowiska reakcyjnego, początkowego stężenia obiektów badań i nadtlenku wodoru na szybkość degradacji surfaktantów. Uzyskane w toku prac badawczych wyniki potwierdzają wysoką skuteczność zaawansowanego utleniania w układzie H2O2/UVC w usuwaniu badanych surfaktantów ze środowiska wodnego, które jest procesem znacznie efektywniejszym w porównaniu do procesu fotolizy. Unauthenticated
Czasopismo
Rocznik
Tom
Strony
20--26
Opis fizyczny
Bibliogr. 33 poz., tab., wykr.
Twórcy
autor
- Department of Chemical Engineering, Spain University of Granada
autor
- Lodz University of Technology, Poland, Department of Bioprocess Engineering
autor
- Lodz University of Technology, Poland, Department of Bioprocess Engineering
autor
- Lodz University of Technology, Poland, Department of Bioprocess Engineering
Bibliografia
- [1]. Aloui, F., Kchaou, S. & Sayadi, S. (2009). Physicochemical treatments of anionic surfactants wastewater: effect on aerobic biodegradability, Journal of Hazardous Materials, 164, 1, pp. 353–359.
- [2]. Błędzka, D., Gryglik, D., Olak, M., Gębicki, J.L. & Miller, J.S. (2010). Degradation of n-butylparaben and 4-tertoctylphenol in H2O2/UV system, Radiation Physics and Chemistry, 79, 4, pp. 409–416.
- [3]. Bozkurt, H. & Sanin, F.D. (2014). Toxicity of nonylphenol diethoxylate in lab-scale anaerobic digesters, Chemosphere, 104, pp. 69–75.
- [4]. Braga, J.K. & Varesche, M.B.A. (2011). Commercial laundry water characterization for anaerobic treatment in fluidized bed reactor. X Oficina e Seminario Latino Americano de Digestão Anaeróbia (DAAL), Ouro Preto.
- [5]. Canonica, S., Meunier, L. & von Gunten, U. (2008). Phototransformation of selected pharmaceuticals during UV treatment of drinking water, Water Research, 42, 1–2, pp. 121–128.
- [6]. CESIO. (2014). CESIO news. European Committee of Organic Surfactants and their Intermediates, Issue 15, September 2014.
- [7]. Chidambara, C.B. & Quen, H.L. (2005). Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique, Chemical Engineering Science, 60, 19, pp. 5305–5311.
- [8]. Cserháti, T., Forgács, E. & Orgos, G. (2002). Biological activity and environmental impact of anionic surfactants, Environmental International, 28, pp. 337–348.
- [9]. Fernández-Serrano, M., Jurado, E., Fernández-Arteaga, A., Ríos, F. & Lechuga, M. (2014). Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment, Journal of Surfactants and Detergents, 17, 6, pp. 1161–1168.
- [10]. Ferrara, F., Fabietti, F., Delise, M. & Funari, E. (2005). Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy), Chemosphere, 59, 8, pp. 1145–1150.
- [11]. Hoigne, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation processes, In: Quality and treatment of drinking water II, Hrubec, J. (Eds.). Springer-Verlag, Berlin, Heidelberg, Germany 1998.
- [12]. Human and Environmental Risk Assessments (HERA). (2013). Linear alkylbenzene sulphonate. Revised HERA report. April 2013. Retrieved from: (http://www.heraproject.com (03.11.2016)).
- [13]. Ikehata, K. & El-Din, M.G. (2004). Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: A review, Ozone Science and Engineering, 26, 4, pp. 327–343.
- [14]. Jurado, E., Fernández-Serrano, M., Nuñez-Olea, J., Luzón, G. & Lechuga, M. (2006). Simplified spectrophotometric method using methylene blue for determining anionic surfactants: Applications to the study of primary biodegradation in aerobic screening tests, Chemosphere, 65, 2, pp. 278–285.
- [15]. Jurado, E., Fernández-Serrano, M., Ríos, F. & Lechuga, M. (2013). Aerobic biodegradation of surfactants, In: Biodegradation – life of science, Chamy, R. & Rosenkranz, F. (Eds.), pp. 66–81. InTech, Rijeka, Croatia 2013.
- [16]. Kuczajowska-Zadrożna, M., Filipkowska, U. & Jóźwiak, T. (2015) Application of biosurfactants for heavy netals leaching from immobilized activated sludge, Archives of Environmental Protection, 41, pp. 43–52.
- [17]. Lechuga, M., Fernández-Arteaga, A., Fernández-Serrano, M., Jurado, E., Burgos, A. & Ríos, F. (2013). Ozonation of anionic and non-ionic surfactants in aqueous solutions: impact on aquatic toxicity, Journal of Surfactants and Detergents, 16, pp. 779–784.
- [18]. Lechuga, M., Fernández-Arteaga, A., Fernández-Serrano, M., Jurado, E., Burgos, A. & Ríos, F. (2014). Combined use of ozonation and biodegradation of anionic and non-ionic surfactants, Journal of Surfactants and Detergents, 17, pp. 363–370.
- [19]. Ledakowicz, S., Miller, J.S. & Olejnik, D. (1999). Oxidation of PAHs in water solutions by ultraviolet radiation combined with hydrogen peroxide, International Journal of Photoenergy, 1, pp. 55–60.
- [20]. Ledakowicz, S., Perkowski, J., Bulska, A., Jamroz, T. & Sencio, B. (2005). Ozonation impact on degradation and toxicity of non-ionic surfactants, Ozone Science and Enginnering, 27, 6, pp. 437–445.
- [21]. Legrini, O., Oliveros, E. & Braun, A.M. (1993). Photochemical processes for water treatment, Chemical Reviews, 93, 2, pp. 671–698.
- [22]. Liwarska-Bizukojc, E. & Bizukojc, M. (2008). Estimation of the impact of anionic surfactants on activated sludge flocs morphology in a batch system, Archives of Environmental Protection, 34, 4, pp. 25–34.
- [23]. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S. & Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of the Total Environment, 473–474, pp. 619–641.
- [24]. Markets and Markets (2013). Surfactants market by product types [anionic, non-ionic, cationic, amphoteric], substrates [synthetic/petrochemical, bio-based/natural/green], geography and applications-Global industry trends and forecast to 2017.
- [25]. Nicole, I., De Laat, J., Dore, M., Duguet, J. & Bonnel, C. (1990). Use of UV radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry, Water Research, 24, 2, pp. 157–168. (in French)
- [26]. Pagano, M., Lopez, A., Volpe, A., Mascolo, G. & Ciannarella, R. (2008). Oxidation of nonionic surfactants by Fenton and H2O2/UV processes, Environmental Technology, 29, pp. 423–433.
- [27]. Petrovic, M., Rodriguez. A., Borrull, F., Marce, R.M., González, E. & Barceló, D. (2002). Occurrence and distribution of nonionic surfactants, their degradation products, and linear alkylbenzene sulfonates in coastal waters and sediments in Spain, Environmental Toxicology and Chemistry, 21, 1, pp. 37–46.
- [28]. Rebello, S., Asok, A.K., Mundayoor, S. & Jisha, M.S. (2014). Surfactants: toxicity, remediation and green surfactants, Environmental Chemistry Letters, 12, 2, pp. 275–287.
- [29]. Robert-Peillar, F., Syakti, A.D., Coulomb, B., Doumenq, P., Malleret, L., Asia, L. & Boudenne, J.L. (2015). Occurrence and fate of selected surfactants in seawater at the outfall of the Marseille urban sewerage system, International Journal of Environmental Science and Technology, 12, pp. 1527–1538.
- [30]. Roberts, D.W. & Marshall, S.J. (1995). Application of hydrophobicity parameters to prediction of the acute aquatic toxicity of commercial surfactant mixtures, SAR and QSAR in Environmental Research, 4, pp.167–176.
- [31]. Sanz, J., Lombraña, J.I. & De Luis, A. (2013). Temperature-assisted UV/H2O2 oxidation of concentrated linear alkylbenzene sulphonate (LAS) solutions, Chemical Engineering Journal, 215–216, pp. 533–541.
- [32]. Ying, G.-G. (2006). Fate, behaviour and effects of surfactants and their degradation products in the environment, Environmental International, 32, 3, pp. 417–431.
- [33]. Zgoła-Grześkowiak, A., Grześkowiak, T. & Szymański, A. (2015). Biodegradation of nonylphenol monoproxyethoxylates, Journal of Surfactants and Detergents, 18, pp. 355–364.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65694114-d333-4d94-b81c-5c1564bba934