PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Kinematic-geometry of a line trajectory and the invariants of the axodes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigate the relationships between the instantaneous invariants of a one-parameter spatial movement and the local invariants of the axodes. Specifically, we provide new proofs for the Euler-Savary and Disteli formulas using the E. Study map in spatial kinematics, showcasing its elegance and efficiency. In addition, we introduce two line congruences and thoroughly analyze their spatial equivalence. Our findings contribute to a deeper understanding of the interplay between spatial movements and axodes, with potential applications in fields such as robotics and mechanical engineering.
Wydawca
Rocznik
Strony
art. no. 20220252
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • School of Mathematics, Hangzhou Normal University, Hangzhou 311120, China
  • Mathematical Science Department, Faculty of Sciences, Princess Nourah Bint Abdulrahman, Riyadh 11546, KSA
  • Department of Mathematics, Faculty of Science, University of Assiut, Assiut 71516, Egypt
Bibliografia
  • [1] O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Press, New York, 1979.
  • [2] A. Karger and J. Novak, Space Kinematics and Lie Groups, Gordon and Breach Science Publishers, New York, 1985.
  • [3] H. Pottman and J. Wallner, Computational Line Geometry, Springer-Verlag, Berlin, Heidelberg, 2001.
  • [4] R. Garnier, Cours de Cinématique, Tome II: Roulement et Vibration-La Formule de Savary et son Extension a laEspace, Gauthier-Villars, Paris, 1956.
  • [5] J. Phillips and K. Hunt, On the theorem of three axes in the spatial motion of three bodies, J. Appl. Sci. 154 (1964), 267–287.
  • [6] M. Skreiner, A study of the geometry and the kinematics of Instantaneous spatial motion, J. Mech. 1 (1966), 115–143.
  • [7] B. Dizioglu, Einfacbe Herleitung der Euler-Savaryschen Konstruktion der riiumlichen Bewegung, Mech. Mach. Theory 9 (1974), 247–254.
  • [8] R. A. Abdel-Baky and F. R. Al-Solamy, A new geometrical approach to one-parameter spatial motion, J. Eng. Math. 60 (2008), 149–172.
  • [9] R. A. Abdel-Baky and R. A. Al-Ghefari, On the one-parameter dual spherical motions, Comput. Aided Geom. D. 28 (2011), 23–37.
  • [10] R. A. Al-Ghefari and R. A. Abdel-Baky, Kinematic geometry of a line trajectory in spatial motion, J. Mech, Sci. Technol. 29 (2015), no. 9, 3597–3608.
  • [11] R. A. Abdel-Baky, On the curvature theory of a line trajectory in spatial kinematics, Commun. Korean Math. Soc. 34 (2019), no. 1, 333–349.
  • [12] M. C. Aslan and G. A. Sekerci, Dual curves associated with the Bonnet ruled surfaces, Int. J. Geom. Methods Mod. Phys. 17 (2020), 2050204.
  • [13] N. Alluhaibi, Ruled surfaces with constant Disteli-axis, AIMS Math. 5 (2020), 7678–7694.
  • [14] R. A. Abdel-Baky and F. Tas, W-Line congruences, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 69 (2020), 450–460.
  • [15] R. A. Abdel-Baky and M. F. Naghi. A study on a line congruence as surface in the space of lines, AIMS Math. 6 (2021), 11109–11123.
  • [16] Ö. Köse, C. C. Sarıoğlu, B. Karabey, and I. Karakılıç, Kinematic differential geometry of a rigid body in spatial motion using dual vector calculus: Part-II, Appl. Math. 182 (2006), 333–358.
  • [17] J. M. McCarthy and B. Roth, The curvature theory of line trajectories in spatial kinematics, J. Mech. Des. 103 (1981), no. 4, 718–724.
  • [18] T. Turhan and N. Ayyıldız, A study on geometry of spatial kinematics in Lorentzian space, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 (2017), 808–811.
  • [19] T. Turhan, V. Özdemir, and N. Ayyildiz, Some Results on Point-Line Trajectories in Lorentz 3-space, Int. Electron J. Geom. 9 (2016), 44–49.
  • [20] Y. Li and O. O. Tuncer, On (contra)pedals and (anti)orthotomics of frontals in de Sitter 2-space, Math. Meth. Appl. Sci. 1 (2023), 1–15, DOI: http://dx.doi.org/10.1002/mma.9173.
  • [21] Y. Li, M. T. Aldossary, and R. A. Abdel-Baky, Spacelike circular surfaces in Minkowski 3-space, Symmetry 15 (2023), 173.
  • [22] Y. Li, Z. Chen, S. H. Nazra, and R. A. Abdel-Baky, Singularities for timelike developable surfaces in Minkowski 3-space, Symmetry 15 (2023), 277.
  • [23] Y. Li, M. Erdogdu, and A. Yavuz, Differential geometric approach of Betchov-Da Rios soliton equation, Hacet. J. Math. Stat. 52 (2023), 114–125, DOI: http://dx.doi.org/10.15672/hujms.1052831.
  • [24] Y. Li, K. Eren, K. Ayvacı, and S. Ersoy, The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space, AIMS Math. 8 (2023), 2226–2239, DOI: http://dx.doi.org/10.3934/math.2023115.
  • [25] Y. Li, A. Abdel-Salam, and M. Khalifa Saad, Primitivoids of curves in Minkowski plane, AIMS Math. 8 (2023), 2386–2406, DOI: http://dx.doi.org/10.3934/math.2023123.
  • [26] Y. Li, A. Abolarinwa, A. Alkhaldi, and A. Ali, Some inequalities of Hardy type related to Witten-Laplace operator on smooth metric measure spaces, Mathematics 10 (2022), 4580, DOI: http://dx.doi.org/10.3390/math10234580.
  • [27] Y. Li, A. Alkhaldi, A. Ali, R. Abdel-Baky, and M. Khalifa Saad, Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space, AIMS Math. 8 (2023), 13875–13888, DOI: http://dx.doi.org/10.3934/math.2023709.
  • [28] Y. Li and D. Ganguly, Kenmotsu metric as conformal η-Ricci soliton, Mediterr. J. Math. 20 (2023), 193, DOI: http://dx.doi.org/10.1007/s00009-023-02396-0.
  • [29] Y. Li, S. Srivastava, F. Mofarreh, A. Kumar, and A. Ali, Ricci soliton of CR-warped product manifolds and their classifications, Symmetry 15 (2023), 976, DOI: http://dx.doi.org/10.3390/sym15050976.
  • [30] Y. Li, P. Laurian-Ioan, L. Alqahtani, A. Alkhaldi, and A. Ali, Zermeloas navigation problem for some special surfaces of rotation, AIMS Math. 8 (2023), 16278–16290, DOI: http://dx.doi.org/10.3934/math.2023833.
  • [31] Y. Li, A. Çalişkan, Quaternionic shape operator and rotation matrix on ruled surfaces, Axioms 12 (2023), 486, DOI: http://dx.doi.org/10.3390/axioms12050486.
  • [32] Y. Li, A. Gezer, and E. Karakasss, Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection, AIMS Math. 8 (2023), 17335–17353, DOI: http://dx.doi.org/10.3934/math.2023886.
  • [33] Y. Li, S. Bhattacharyya, S. Azami, A. Saha, and S. Hui, Harnack estimation for nonlinear, weighted, heat-type equation along geometric flow and applications, Mathematics 11 (2023), 2516, DOI: http://dx.doi.org/10.3390/math11112516.
  • [34] Y. Li, H. Kumara, M. Siddesha, and D. Naik, Characterization of Ricci almost soliton on Lorentzian manifolds, Symmetry 15 (2023), 1175, DOI: http://dx.doi.org/10.3390/sym15061175.
  • [35] Y. Li, S. Gür Mazlum, and S. Şenyurt, The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space, Int. J. Geom. Methods M. 20 (2023), 2350030, DOI: http://dx.doi.org/10.1142/S0219887823500305.
  • [36] Y. Li, K. Eren, and S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space, AIMS Math. 8 (2023), 22256–22273, DOI: http://dx.doi.org/10.3934/math.20231135.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6568681c-c15a-49ef-b8aa-53e1dd8957ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.