PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of lead and molybdenum disulfide additives on wear resistance and physical properties of copper–graphite composite

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the impact of adding lead (Pb) and molybdenum disulfide (MoS2) to copper–graphite (Cu–Gr) composites used in electric motors. The composites were produced by mechanical alloying (MA). The mixture was then poured and compressed with varying amounts of Pb and MoS2. Differential thermal analysis was used to determine the sintering temperature of the samples. Further tests were conducted to assess the samples’ wear resistance, density, hardness, and porosity. The effects of the additives of these factors were examined, and the output current of the samples was measured. Scanning electron microscopy was also used to analyze the morphology of the Gr plates coated with Cu, Pb, and MoS2. The results indicated that adding Pb and MoS2 increased the density of the sintered samples and their Vickers hardness. Meanwhile, porosity decreased with increased concentrations of Pb and MoS2. Additionally, MoS2 was found to improve wear resistance via a pin-on-disk test.
Wydawca
Rocznik
Strony
148--161
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Materials Engineering Department, University of Tabriz Tabriz, Iran
  • Materials Engineering Department, University of Tabriz Tabriz, Iran
  • School of Metallurgy and Materials Engineering, Iran University of Science and Technology Tehran, Iran
  • School of Metallurgy and Materials Engineering, Iran University of Science and Technology Tehran, Iran
Bibliografia
  • [1] Song, Y., Fan, J., Wu, S., Liu, J., Zhang, C., Li, Y., Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites, Mater. Sci. Technol. (U.K.), 2020, 36(1): 92–99. DOI:10.1080/02670836.2019.1684036
  • [2] Saha, D., Sen, A., Maiti, H.S., Role of dilatancy on expansion during early stage liquid phase sintering of lead magnesium niobate, Ceram. Int., 2001, 27(1): 51–56. DOI:10.1016/S0272-8842(00)00041-9
  • [3] Su, Y, Jiang, F., Xiao, Z., Long, M., Wu, F., Wu, M., et al., Influence of sintering pressure on microstructure and tribological properties of Copper–Tin composites containing graphite and MoS2, Surf. Topogr. Metrol. Prop., 2022, DOI:10, 045019. 10.1088/2051-672x/ac9fe4
  • [4] Roik, T.A., Gavrish, O.A., Vitsiuk, I.I., The phase composition and structure of the antifriction copper-based composite and their influence on tribological properties, Powder Metall. Met. Ceram., 2021, 60(3–4): 191–197. 10.1007/s11106-021-00227-z
  • [5] Kováčik, J., Emmer, Š, Bielek, J., Keleši, L., Effect of composition on friction coefficient of Cu-graphite composites, Wear, 2008, 265(3–4): 417–421. DOI:10.1016/j.wear.2007.11.012
  • [6] Kovtunov, A.I., Khokhlov, Y.Y., Myamin, S.V., Effect of transition metals on the properties of aluminum-lead composite materials, Russ. Metall., 2017, 2017(13): 1182–1185. DOI:10.1134/S0036029517130134
  • [7] Huang, Y.S., Zeng, X.T., Annergren, I., Liu, F.M., Development of electroless NiP-PTFE-SiC composite coating, Surf. Coat. Technol., 2003, 167(2–3): 207–211. DOI:10.1016/S0257-8972(02)00899-X
  • [8] Furlan, K.P, Prates, P.B., Andrea dos Santos, T., Gouvêa Dias, M.V., Ferreira, H.T., Rodrigues Neto, J.B., et al., Influence of alloying elements on the sintering thermodynamics, microstructure and properties of Fe-MoS2 composites, J. Alloys Compd., 2015, 652:450–458. DOI:10.1016/j.jallcom.2015.08.242
  • [9] Prasad, B.K., Rathod, S., Yadav, M.S., Modi, O.P., The influence of lead suspension in oil lubricant on the sliding wear behaviour of cast iron, Tribol. Lett., 2010, 37(2): 289–299. DOI:10.1007/s11249-009-9526-3
  • [10] Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y., Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide, Wear, 2003, 255(1–6): 573–578. DOI:10.1016/S0043-1648(03)00072-3
  • [11] Sadeghi, N., Aghajani, H., Akbarpour, M.R., Microstructure and tribological properties of in-situ TiC-C/Cu nanocomposites synthesized using different carbon sources (graphite, carbon nanotube and graphene) in the Cu-Ti-C system, Ceram. Int., 2018, 44(18): 22059–22067. DOI:10.1016/j.ceramint.2018.08.316
  • [12] Hu, K.H., Wang, J., Schraube, S., Xu, Y.F., Hu, X.G., Stengler, R., Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials, Wear, 2009, 266(11–12): 1198–1207. DOI:10.1016/j.wear.2009.03.036
  • [13] He, Y., Sun, W.T., Wang, S.C., Reed, P.A.S., Walsh, F.C., An electrodeposited Ni-P-WS2 coating with combined super-hydrophobicity and self-lubricating properties, Electrochim. Acta, 2017, 245:872–882. DOI:10.1016/j.electacta.2017.05.166
  • [14] Hou, J, Chen, P., Shukla, A., Krajnc, A., Wang, T., Li, X., et al., Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses, Science (80-.), 2021, 374(6567): 621–625. DOI:10.1126/science.abf4460
  • [15] Tesfaye, F., Outotec, M., Taskinen, P., Phase equilibria and thermodynamics of the system Zn- As-Cu-Pb-S at temperatures below 1173 K, December 2014, Aalto University, Aalto, 2011, DOI:10.13140/2.1.3852.7048
  • [16] Uzunsoy, D., Kelesoglu, E., Erarslan, Y., Contribution of MoS2 additives to the microstructure and properties of pm copper based brake material, Mater. Test, 2009, 51(5): 318–322. DOI:10.3139/120.110040
  • [17] Singh, S., Thakur, O.P., Prakash, C., Influence of liquid phase additives on structural and sintering behaviour of samarium modified lead titanate ceramics, J. Electroceram., 2003, 11(1–2): 67–72. DOI:10.1023/b:jecr.0000015662.85301.de
  • [18] Tabrizi, A.T., Azadbeh, M., The effect of transient liquid phase on the joining process of aluminum foam core sandwiches, Powder Metall. Prog., 2016, 16(1): 48–58. DOI:10.1515/pmp-2016-0005
  • [19] Furlan, K.P, da Costa Gonçalves, P., Consoni, D.R., Dias, M.V.G., de Lima, G.A., de Mello, J.D.B., et al., Metallurgical aspects of self-lubricating composites containing graphite and MoS2, J. Mater. Eng. Perform., 2017, 26(3): 1135–1145. DOI:10.1007/s11665-017-2563-4
  • [20] Mirhabibi, A., Rand, B., Baghshahi, S., Zadeh, R.A., Graphite flake carbon composites with a ‘sinterable’ microbead matrix: I. Mechanical properties, Carbon., 2003, 41(8): 1593–1603.
  • [21] Akbarpour, M.R., Sadeghi, N., Aghajani, H., Nano TiC-Graphene-Cu composites fabrication by a modified ball-milling method followed by reactive sintering: Effects of reinforcements content on microstructure, consolidation, and mechanical properties, Ceram. Int., 2022, 48(1): 130–136. DOI:10.1016/j.ceramint.2021.09.088
  • [22] Osouli-Bostanabad, K., Aghajani, H., Hosseinzade, E., Maleki-Ghaleh, H., Shakeri, M., High microwave absorption of nano-Fe3O4 deposited electrophoretically on carbon fiber, Mater. Manuf. Process., 2016, 31(10): 1351–1356. DOI:10.1080/10426914.2015.1090595
  • [23] Miracle, D.B., Metal matrix composites - from science to technological significance, Compos. Sci. Technol., 2005, 65(15–16 SPEC. ISS): 2526–2540. DOI:10.1016/j.compscitech.2005.05.027
  • [24] Su, Y., Jiang, F., Long, M., Wu, F., Xiao, Z., Wu, M., Microstructure and frictional properties of copper-tin composites containing graphite and MoS2 by rapid hot-press sintering, Tribol. Int., 2023, 183:108392. DOI:10.1016/j.triboint.2023.108392
  • [25] Nayak, D., Ray, N., Sahoo, R., Debata, M., Analysis of tribological performance of Cu hybrid composites reinforced with graphite and TiC using factorial techniques, Tribol. Trans., 2014, 57(5): 908–918. DOI:10.1080/10402004.2014.923079
  • [26] Salimkhani, H., Movassagh-Alanagh, F., Aghajani, H., Osouli-Bostanabad, K., Study on the magnetic and microwave properties of electrophoretically deposited Nano-Fe3O4 on carbon fiber, Procedia Mater. Sci., 2015, 11:231–237. DOI:10.1016/j.mspro.2015.11.118
  • [27] Peng, T., Zhi Yan, Q., Lu Zhan, X., Jiao Shi, X., Solid FeS lubricant: A possible alternative to MoS2 for Cu–Fe-based friction materials, Int. J. Miner. Metall. Mater., 2017, 24(11): 1278–1283. DOI:10.1007/s12613-017-1520-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65685349-93e5-4a5a-af4d-7022deb3c4e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.