PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control of kinetics of plasma assisted nitriding process of Ni-base alloys by substrate roughness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigated the effect of surface roughness on plasma assisted nitriding (PAN) process kinetics of Ni-base alloys. Two model alloys, namely Ni-10Cr and Ni-14Cr-4Al (wt.%) and commercial Rene 80, were examined. To elucidate the effect of surface roughness on nitriding kinetics, three methods of surface preparation were used, (1) polishing up with 1 μm diamond suspension, (2) grinding up to 220 grit sand-paper, and (3) grit blasting. The samples from each type of material were nitrided under the same conditions and investigated after processing. It was found that increase in roughness results in decreasing nitriding kinetics. The decrease of nitriding kinetics depends on alloy chemical composition, namely more complex chemistry resulted in smaller decrease of kinetics. Moreover, grit-blasting was found to be an improper method for surface preparation for PAN. The responsible mechanism for the effect of surface roughness on PAN kinetics of Ni-base alloys was proposed.
Rocznik
Strony
99--108
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Powstanców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] F. Czerwinski: Heat treatment-conventional and novel applications. InTech, Rijeka, 2012.
  • [2] H. Chandler: Heat Treater’s Guide: Practices and Procedures for Irons and Steels, ASM International, Ohio 1995.
  • [3] J.R. Davis: Surface hardening of steels. ASM International, Ohio 2002.
  • [4] R. Chattopadhyay: Advanced thermally assisted surface engineering processes. Kluwer Academic Publisher, Dordrecht 2004.
  • [5] M. Egawa, et al.: Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels. Surf. Coat. Technol., 205(2010), 246-251, DOI: 10.1016/j.surfcoat.2010.07.093.
  • [6] J.X. Wang, et al.: Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel. Mater. Charact., 60(2009), 197-203, DOI:10.1016/j.matchar.2008.08.011.
  • [7] M. Naeem, et al.: Influence of pulsed power supply parameters on active screen plasma nitriding, Surf. Coat. Technol., 300(2016), 67-77, DOI:10.1016/j.surfcoat.2016.05.032.
  • [8] H. Aghajani, S. Behrangi: Pulsed DC glow discharge plasma nitriding. In: Plasma Nitriding of Steels, Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham 2017.
  • [9] S. Yang, et al.: Effect of nitriding time on the structural evolution and properties of austenitic stainless steel nitrided using high power pulsed DC glow discharge Ar/N2 plasma. J. Coat. Sci. Technol., 3(2016), 62-74, DOI:10.6000/2369-3355.2016.03.02.3.
  • [10] I. Alphonsa, et al.: A study of martensitic stainless steel AISI 420 modified using plasma nitriding. Surf. Coat. Technol., 150(2002), 263-268, DOI:10.1016/S0257-8972(01)01536-5.
  • [11] K. Wu, et al.: Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel. Vac., 84(2010), 870-875, DOI: 10.1016/j.vacuum.2009.12.001.
  • [12] J.R. Sobiecki, P. Mańkowski, A. Patejuk: Improving the performance properties of valve martensitic steel by glow discharge-assisted nitriding. Vac., 76(2004), 57-61, DOI:10.1016/j. vacuum.2004.05.020.
  • [13] Y. Birol: Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures: Surf. Coat. Technol., 205(2010), 597-602, DOI: 10.1016/j.surfcoat.2010.07.035.
  • [14] A. da Silva Rocha, et al.: Microstructure and residual stresses of a plasma-nitrided M2 tool steel. Surf. Coat. Technol., 115(1999), 24-31, DOI: 10.1016/S0257-8972(99)00063-8.
  • [15] S. Karaoglu: Structural characterization and wear behavior of plasma-nitrided AISI 5140 low-alloy steel. Mater. Charact., 49(2003), 349-357, DOI:10.1016/S1044-5803(03)00031-7.
  • [16] M. Karakan, A. Alsaran, A. Ҫelik: Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel. Mater. Charact., 49(2003), 241-246, DOI:10.1016/S1044-5803(03)00010-X.
  • [17] F. Mahboubi, K. Abdolvahabi: The effect of temperature on plasma nitriding behavior of DIN 1.6959 low alloy steel. Vac., 81(2006), 239-243, DOI:10.1016/j.vacuum.2006.03.010.
  • [18] F. Pedraza, et al.: Low-energy high-flux nitriding of Ni and Ni20Cr substrates. Surf. Coat. Technol., 176(2004), 236-242, DOI:10.1016/S0257-8972(03)00735-7.
  • [19] F. Mindivana, and H. Mindivan: Comparisons of wear performance of hardened Inconel 600 by different nitriding processes. Procedia Eng., 68(2013), 730-735, DOI:10.1016/j.proeng.2013.12.246.
  • [20] Y. Sun: Kinetics of layer growth during plasma nitriding of nickel based alloy Inconel 600. J. Alloys Compd., 351(2003), 241-247, DOI:10.1016/S0925-8388(02)01034-4.
  • [21] C. Sudha, et al.: Nitriding kinetics of Inconel 600. Surf. Coat. Technol., 226(2013), 92-99, DOI: 10.1016/j.surfcoat.2013.03.040.
  • [22] T. Borowski, et al.: Modifying the properties of the Inconel 625 nickel alloy by glow discharge assisted nitriding. Vac., 83(2009), 1489-1493, DOI: 10.1016/j.vacuum.2009.06.056.
  • [23] H. He, et al.: Stress induced anisotropic diffusion during plasma-assisted nitriding of a ni-based alloy. Mater. Sci. Forum, 475-479(2005), 3669-3672, DOI: 10.4028/www.scientific.net/MSF.475-479.3669.
  • [24] C. Leroy, et al.: Plasma assisted nitriding of Inconel 690. Surf. Coat. Technol., 142-144(2001), 241-247, DOI:10.1016/S0257-8972(01)01243-9.
  • [25] Y.C. Sharma, et al.: Low temperature plasma ion nitriding (PIN) of Inconel 690 alloy. Mater. Res. Express, 6(2018), 026559. DOI:10.1088/2053-1591/aaf1f3.
  • [26] H. Kovací, et al.: Effect of plasma nitriding parameters on the wear resistance of alloy Inconel 718. Met. Sci. Heat Treat., 58(2016), 470-474, DOI: 10.1007/s11041-016-0037-1.
  • [27] K. Venkatesan, R. Ramanujam, P. Kuppan: Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718. Opt. Laser Technol., 78(2016), 10-18, DOI: 10.1016/j.optlastec.2015.09.021.
  • [28] N.Z. Negm: A study on RF plasma nitriding at a constant power in different H2–N2 mixtures at different temperatures. Mater. Sci. Eng. B, 129(2006), 207-210, DOI: 10.1016/j.mseb.2006.01.015.
  • [29] F.Z. Bouanis, et al.: Study of corrosion resistance properties of nitrided carbon steel using radiofrequency N2/H2 cold plasma process. Corros. Sci. 52(2010), 3180-3190, DOI: 10.1016/j.corsci.2010.05.021.
  • [30] K.H. Prabhudev: Handbook of heat treatment of steels. McGraw-Hill, New Delhi 2005.
  • [31] G.E. Totten: Steel heat treatment hand book, Equipment and Process Design, Taylor & Francis Group, Boca Raton 2007.
  • [32] W.J. Nowak, D. Serafin, B. Wierzba: Effect of surface mechanical treatment on the oxidation behavior of FeAl-model alloy, J. Mater. Sci., 54(2019), 9185-9196, DOI:10.1007/s10853-019-03509-5.
  • [33] W.J. Nowak: Effect of surface roughness on early stage oxidation behavior of Ni-Base superalloy IN 625. Appl. Sys. Innov., 1(2018)3, 32, DOI: 10.3390/asi1030032.
  • [34] W. J. Nowak, B. Wierzba: Effect of surface treatment on high temperature oxidation behavior of IN 713C. J. Mater. Eng. Perform. 27(2018)10, 5280-5290, DOI:10.1007/s11665-018-3621-2.
  • [35] D. Serafin, W.J. Nowak, B. Wierzba: The effect of surface preparation on high temperature oxidation of Ni, Cu and Ni-Cu alloy. Appl. Surf. Sci. 476(2019), 442-451, DOI:10.1016/j.apsusc.2019.01.122.
  • [36] D. Serafin, W.J. Nowak, B. Wierzba: Mechanically prepared copper surface in oxidizing and non-oxidizing conditions. Appl. Surf. Sci., 492(2019), 607-616, DOI:10.1016/j.apsusc.2019.06.231.
  • [37] W.J. Nowak, et al.: Effect of substrate roughness on oxidation resistance of an aluminized Ni-Base superalloy. Metals, 9(2019), 782-795, DOI:10.3390/met9070782.
  • [38] W.J. Nowak, et al.: Durability of underaluminized thermal barrier coatings during exposure at high temperature. Surf. Coat. Technol. 382(2020), 125236, DOI:10.1016/j.surfcoat.2019.125236.
  • [39] J.P. Pfeifer, et al.: Quantitative analysis of oxide films on ODS-alloys using MCs+-SIMS and e-beam SNMS. J. Anal. Chem., 346(1993), 186-191, DOI:10.1007/BF00321410.
  • [40] W.J. Quadakkers, et al.: Composition and growth mechanisms of alumina scales on FeCrAl-based alloys determined by SNMS. Appl. Surf. Sci. 52(1991), 271-287, DOI:10.1016/0169-4332(91)90069-V.
  • [41] W.J. Nowak: Characterization of oxidized Ni-based superalloys by GD-OES. J. Anal. At. Spectrom., 32(2017), 1730-1738. DOI:10.1039/C7JA00069C.
  • [42] J.T. Black, R.A. Kohser: DeGarmo’s materials and processes in manufacturing, Eleventh Edition. Wiley, Hoboken 2012.
  • [43] R. Cade, D. Owen: Charge density, vertices and high curvature in two-dimensional electrostatics. J. Electrostat., 17(1985), 125-136, DOI:10.1016/0304-3886(85)90015-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-656547ae-ed42-4437-8b5e-13071de9ace6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.