PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Marine snow and epipelagic suspensoids in the Reda carbonates and a pronounced mid-Ludfordian (Silurian) CIE in the axis of the Baltic Basin (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mid-Ludfordian pronounced, positive carbon isotope excursion (CIE), coincident with the Lau/kozlowskii extinction event, has been widely studied so far in shallow-water, carbonate successions, whereas its deep-water record remains insufficiently known. The aim of this research is to reconstruct the sedimentary environments and the palaeoredox conditions in the axial part of the Baltic-Podolian Basin during the event. For these purposes, the Pasłęk IG-1 core section has been examined using microfacies analysis, framboid pyrite diameter and carbon isotope measurements. The prelude to the event records an increased influx of detrital dolomite interpreted as eolian dust, coupled with a pronounced decrease in the diameter of the pyrite framboids, indicating persistent euxinic conditions across the event. The event climax is recorded as the Reda Member and consists of calcisiltites, composed of calcite microcrystals (‘sparoids’), which are interpreted as suspensoids induced by phytoplankton blooms in the hipersaturation conditions present in the epipelagic layer of the basin. Both the prelude and climax facies show lamination, interpreted as having resulted from periodical settling of marine snow, combined with hydraulic sorting within a ‘benthic flocculent layer’, which additionally may be responsible for a low organic matter preservation rate due to methanogenic decomposition. Contrary to the observed basinward CIE decline in the benthic carbonates in the basin, the Reda Member records an extremely positive CIE (up to 8.25‰). Given the pelagic origin of the sparoids, the CIE seems to record surface-water carbon isotope ratios. This points to a large carbon isotope gradient and kinetic fractionation between surface and bottom waters during the mid-Ludfordian event in a strongly stratified basin. The Reda facies-isotope anomaly is regarded as undoubtedly globally triggered, but amplified by the stratified and euxinic conditions in the partly isolated, Baltic-Podolian basin. Hence, the common interpretation of the basin record as representative for the global ocean needs to be treated with great caution.
Rocznik
Strony
529--567
Opis fizyczny
Bibliogr. 183 poz., rys., tab.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland
Bibliografia
  • 1. Alldredge, A.L. and Gotschalk, C. 1988. In situ settling behavior of marine snow 1. Limnology and Oceanography, 33 (3), 339-351.
  • 2. Alldredge, A.L. and Silver, M.W. 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20, 41-82.
  • 3. Alperin, M.J., Blair, N.E., Albert, D.B., Hoehler, T.M. and Martens, C.S. 1992. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment. Glob. Biogeochem. Cycles 6, 271-291.
  • 4. Anderson, L.G., Dyrssen, D. and Skei, J. 1987. Formation of chemogenic calcite in super-anoxic seawater - Framvaren, southern Norway. Marine Chemistry, 20 (4), 361-376.
  • 5. Ariztegui, D., Anselmetti, F.S., Robbiani, J.M., Bernasconi, S.M., Brati, E., Gilli, A. and Lehmann, M.F. 2010. Natural and human-induced environmental change in southern Albania for the last 300 years - Constraints from the Lake Butrint sedimentary record. Global and Planetary Change, 71 (3-4), 183-192.
  • 6. Arvidson, R.S., Mackenzie, F.T. and Berner, R.A. 2014. The sensitivity of the Phanerozoic inorganic carbon system to the onset of pelagic sedimentation. Aquatic geochemistry, 20 (2-3), 343-362.
  • 7. Arvidson, R.S., Mackenzie, F.T. and Guidry, M. 2006. MAGic: A Phanerozoic model for the geochemical cycling of major rock-forming components. American Journal of Science, 306 (3), 135-190.
  • 8. Bahr, A., Lamy, F., Arz, H., Kuhlmann, H. and Wefer, G. 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214 (4), 309-322.
  • 9. Bakran-Petricioli, T., Petricioli, D. and Požar-Domac, A. 1998. Influence of isolation and peculiar ecological properties on biodiversity - an example of marine lake Zmajevo Oko near Rogoznica (Adriatic Sea). Rapports et proces verbaux des réunions - Commission internationale pour l’exploration scientifique de la mer Méditerranée, 35 (2), 518-519.
  • 10. Barrande, J. 1850. Graptolites de Boheme, 74 pp. Bellmann; Prague.
  • 11. Bassett, M., Kaljo, D. and Teller, L. 1989. The Baltic region. In: Holland, C.H. et al. (Ed.), A global standard for the Silurian System. Geological Series, 9, 158-170.
  • 12. Beaulieu, S.E. 2002. Accumulation and Fate of Phytodetritus on the Sea Floor. Oceanography and Marine Biology, An Annual Review, 40, 171-232.
  • 13. Beltran, C., De Rafélis, M., Person, A., Stalport, F. and Renard, M. 2009. Multiproxy approach for determination of nature and origin of carbonate micro-particles so-called “micarb” in pelagic sediments. Sedimentary Geology, 213 (1-2), 64-76.
  • 14. Berhane, I., Sternberg, R.W., Kineke, G.C., Milligan, T. and Kranck, K. 1997. The variability of suspended aggregates on the Amazon Continental Shelf. Continental Shelf Research, 17 (3), 267-285.
  • 15. Berner, R. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta, 39 (4), 489-504.
  • 16. Berner, R.A. and Mackenzie, F.T. 2011. Burial and preservation of carbonate rocks over Phanerozoic time. Aquatic geochemistry, 17 (4-5), 727-733.
  • 17. Beversdorf, L.J., White, A.E., Björkman, K.M., Letelier, R.M. and Karl, D.M. 2010. Phosphonate metabolism by Trichodesmium IMS101 and the production of greenhouse gases. Limnology and oceanography, 55 (4), 1768-1778.
  • 18. Bickert, T., Pätzold, J., Samtleben, C. and Munnecke, A. 1997. Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden. Geochimica et Cosmochimica Acta, 61(13), 2717-2730.
  • 19. Birgel, D., Meister, P., Lundberg, R., Horath, T.D., Bontognali, T.R.R., Bahniuk, A.M., de, Rezende, C.E., Vasconcelos, C. and McKenzie, J.A. 2015. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Paleo-/Neoproterozoic stromatolites? Geobiology, 13 (3), 245-266.
  • 20. Black, M. 1933. The precipitation of calcium carbonate on the Great Bahama Bank. Geological Magazine, 70 (10), 455-466.
  • 21. Bojanowski, M.J. 2014. Authigenic dolomites in the Eocene-Oligocene organic carbon-rich shales from the Polish Outer Carpathians: Evidence of past gas production and possible gas hydrate formation in the Silesian basin. Marine and petroleum geology, 51, 117-135.
  • 22. Bosak, T., Souza-Egipsy, V., Corsetti, F.A. and Newman, D.K. 2004. Micrometer-scale porosity as a biosignature in carbonate crusts. Geology, 32 (9), 781-784.
  • 23. Botz, R., Pokojski, H. D., Schmitt, M. and Thomm, M. 1996. Carbon isotope fractionation during bacterial methanogenesis by CO2 reduction. Organic Geochemistry, 25 (3-4), 255-262.
  • 24. Bowman, C.N., Young, S.A., Kaljo, D., Eriksson, M.E., Them, T.R., Hints, O., Martma, T. and Owens, J.D. 2019. Linking the progressive expansion of reducing conditions to a step-wise mass extinction event in the late Silurian oceans. Geology, 47 (10), 968-972.
  • 25. Braissant, O., Cailleau, G., Dupraz, C. and Verrecchia, E.P. 2003. Bacterially induced mineralization of calcium carbonate in terrestrial environments: the role of exopolysaccharides and amino acids. Journal of Sedimentary Research, 73 (3), 485-490.
  • 26. Brenchley, P.J., Marshall, J.D., Carden, G.A.F., Robertson, D.B.R., Long, D.G.F., Meidla, T., Hints, L. and Anderson, T.F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22 (4), 295-298.
  • 27. Broecker, W., Sanyal, A. and Takahashi, T. 2000. The origin of Bahamian whitings revisited. Geophysical Research Letters, 27 (22), 3759-3760.
  • 28. Buczynski, C. and Chafetz, H.S. 1991. Habit of bacterially induced precipitates of calcium carbonate and the influence of medium vicosity on mineralogy. Journal of Sedimentary Research, 61 (2), 226-233.
  • 29. Calner, M. 2008. Silurian global events - at the tipping point of climate change. In: Elewa, A.M.T. (Ed.), Mass extinction, 21-58. Springer-Verlag; Heidelberg.
  • 30. Calvert, S.E., Karlin, R.E., Toolin, L.J., Donahue, D.J., Southon, J.R. and Vogel, J.S. 1991. Low organic carbon accumulation rates in Black Sea sediments. Nature, 350 (6320), 692.
  • 31. Calvert, S.E. and Karlin, R.E. 1998. Organic carbon accumulation in the Holocene sapropel of the Black Sea. Geology, 26 (2), 107-110.
  • 32. Capone, D.G., Subramaniam, A., Montoya, J.P., Voss, M., Humborg, C., Johansen, A.M., Siefert, R. and Carpenter, E.J. 1998. An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Marine Ecology Progress Series, 172, 281-292.
  • 33. Carini, P., White, A.E., Campbell, E.O. and Giovannoni, S.J. 2014. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nature communications, 5 (1), 1-7.
  • 34. Chafetz, H.S. 2013. Porosity in bacterially induced carbonates: Focus on micropores. AAPG bulletin, 97 (11), 2103-2111.
  • 35. Cherns, L. and Wheeley, J.R. 2009. Early Palaeozoic cooling events: peri-Gondwana and beyond. Geological Society, London, Special Publications, 325 (1), 257-278.
  • 36. Claypool, G.E. and Kaplan, I.R. 1974. The origin and distribution of methane in marine sediments. In: Kaplan, I.R. (Ed.), Natural Gases in Marine Sediments, 99-139. Plenum Press; New York.
  • 37. Cocks, L.R.M. and Torsvik, T.H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews, 72 (1), 39-66.
  • 38. Davis, R.A., Reas, C. and Robbins, L. 1995. Calcite mud in a Holocene back-barrier lagoon; Lake Reeve, Victoria, Australia. Journal of Sedimentary Research, 65 (1a), 178-184.
  • 39. De Groot, K. and Duyvis, E. 1966. Crystal form of precipitated calcium carbonate as influenced by adsorbed magnesium ions. Nature, 212 (5058), 183-184.
  • 40. Degens, E.T. and Stoffers, P. 1976. Stratified waters as a key to the past. Nature, 263 (5572), 22.
  • 41. Dela Pierre, F., Clari, P., Natalicchio, M., Ferrando, S., Giustetto, R., Lozar, F., Lugli, S., Manzi, V., Roveri, M. and Violanti, D. 2014. Flocculent layers and bacterial mats in the mud-stone interbeds of the Primary Lower Gypsum Unit (Tertiary Piedmont Basin, NW Italy): archives of palaeoenvironmental changes during the Messinian salinity crisis. Marine Geology, 355, 71-87.
  • 42. Dittrich, M., Kurz, P. and Wehrli, B. 2004. The role of auto trophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiology Journal, 21 (1), 45-53.
  • 43. Dittrich, M. and Obst, M. 2004. Are picoplankton responsible for calcite precipitation in lakes? AMBIO: A Journal of the Human Environment, 33 (8), 559-564.
  • 44. Dix, G.R. 2001. Origin of Sr-rich magnesian calcite mud in a Holocene pond basin (Lee Stocking Island, Bahamas). Journal of Sedimentary Research, 71 (1), 167-175.
  • 45. Duque-Botero, F. and Florentin, J.-M.M. 2008. Role of cyanobacteria in Corg-rich deposits: an example from the Indidura Formation (Cenomanian-Turonian), northeastern Mexico. Cretaceous Research, 29 (5-6), 957-964.
  • 46. Eisma, D. 1986. Flocculation and de-flocculation of suspended matter in estuaries. Netherlands Journal of Sea Research, 20 (2-3), 183-199.
  • 47. Eriksson, M.J. and Calner, M. 2008. A sequence stratigraphical model for the Late Ludfordian (Silurian) of Gotland, Sweden: implications for timing between changes in sea level, palaeoecology, and the global carbon cycle. Facies, 54 (2), 253-276.
  • 48. Farkaš, J., Frýda, J. and Holmden, C. 2016. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion. Earth and Planetary Science Letters, 451, 31-40.
  • 49. Folk, R.L. 1974. The natural history of crystalline calcium carbonate; effect of magnesium content and salinity. Journal of Sedimentary Research, 44 (1), 40-53.
  • 50. Freytet, P. and Verrecchia, E. 1993. Complex calcitic crystallizations in nostoc parmelioides kütz (Freshwater cyanobacterium): Rhombs around trichomes inside nostoc colonies and epiphytic bacterial microstromatolites. Geomicrobiology Journal, 11 (2), 77-84.
  • 51. Frýda, J. and Manda, Š. 2013. A long-lasting steady period of isotopically heavy carbon in the late Silurian ocean: evolution of the δ13C record and its significance for an integrated δ13C, graptolite and conodont stratigraphy. Bulletin of Geosciences, 88 (2), 463-482.
  • 52. Ghienne, J.F., Desrochers, A., Vandenbroucke, T.R., Achab, A., Asselin, E., Dabard, M.P., Claude Farley, C., Loi, A., Paris, F., Wickson, S. and Veizer, J. 2014. A Cenozoic-style scenario for the end-Ordovician glaciation. Nature Communications, 5, 4485.
  • 53. Giddings, J.A. and Wallace, M.W. 2009. Facies-dependent δ13C variation from a Cryogenian platform margin, South Australia: Evidence for stratified Neoproterozoic oceans? Palaeogeography, Palaeoclimatology, Palaeoecology, 271 (3-4), 196-214.
  • 54. Gill, B.C., Lyons, T.W., Young, S.A., Kump, L.R., Knoll, A.H. and Saltzman, M.R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469 (7328), 80-83.
  • 55. Glenn, C., Rajan, S., McMurtry, G. and Benaman, J. 1995. Geochemistry, mineralogy, and stable isotopic results from Ala Wai estuarine sediments: Records of hypereutrophication and abiotic whitings. Pacific Science, 49 (4), 367-399.
  • 56. Goyet, C., Bradshaw, A.L. and Brewer, P.G. 1991. The carbonate system in the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38 (Supplement 2), 1049-1068.
  • 57. Greenfield, L.J. 1963. Metabolism and concentration of calcium and magnesium and precipitation of calcium carbonate by a marine bacterium. Annals of the New York Academy of Sciences, 109 (1), 23-45.
  • 58. Grimm, K.A., Lange, C.B. and Gill, A.S. 1997. Self-sedimentation of phytoplankton blooms in the geologic record. Sedimentary Geology, 110, 151-161.
  • 59. Heldal, M., Norland, S., Erichsen, E.S., Thingstad, T.F. and Bratbak, G. 2012. An unaccounted fraction of marine biogenic CaCO3 particles. PloS one, 7 (10), e47887, 1-6.
  • 60. Holmden, C., Panchuk, K. and Finney, S. 2012. Tightly coupled records of Ca and C isotope changes during the Hirnantian glaciation event in an epeiric sea setting. Geochimica et Cosmochimica Acta, 98, 94-106.
  • 61. Huff, W.D., Bergström, S.M. and Kolata, D.R. 2000. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine. Journal of the Geological Society, 157 (2), 493-504.
  • 62. Irwin, H., Curtis, C. and Coleman, M. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic carbon-rich sediments. Nature, 269, 209-213.
  • 63. Jannasch, H.W. 1991. Microbial processes in the Black Sea water column and top sediment: and overview. In: Izdar, E. and Murray, J.W. (Eds), Black Sea Oceanography; NATO Advanced Studies Institute Series, C351, 271-281. Kluwer Academic; Dordrecht.
  • 64. Jaworowski, K. 1971. Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geologica Polonica, 21 (4), 519-572.
  • 65. Jaworowski, K. 2000. Facies analysis of the Silurian shale-silt-stone succession in Pomerania (northern Poland). Geological Quarterly, 44 (3), 297-315.
  • 66. Jeppsson, L. and Aldridge, R.J. 2000. Ludlow (late Silurian) oceanic episodes and events. Journal of the Geological Society, 157 (6), 1137-1148.
  • 67. Jeppsson, L., Talent, J.A., Mawson, R., Andrew, A., Corradini, C., Simpson, A.J., Wigforss-Lange, J. and Schönlaub, H.P. 2012. Late Ludfordian correlations and the Lau event. In: Talent, J.A. (Ed.), Earth and Life, International Year of Planet Earth, 653-675. Springer Verlag; Heidelberg.
  • 68. Jeppsson, L., Talent, J.A., Mawson, R., Simpson, A.J., Andrew, A.S., Calner, M., Whitford, D., Trotter, J.A., Sandström, O. and Caldon, H.J. 2007. High-resolution Late Silurian correlations between Gotland, Sweden, and the Broken River region, NE Australia: lithologies, conodonts and isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 245 (1), 115-137.
  • 69. Kaljo, D., Boucot, A.J., Corfield, R.M., Le Herisse, A., Koren, T.N., Kriz, J., Mannik, P., Marss, T., Nestor, V., Shaver, R.H., Siveter, D.J. and Viira, V. 1996. Silurian bio-events. In: Walliser, O.H. (Ed.), Global events and event stratigraphy in the Phanerozoic, 173-224. Springer; Berlin, Heidelberg.
  • 70. Kaljo, D., Einasto, R., Martma, T., Märss, T., Nestor, V. and Viira, V. 2015. A bio-chemostratigraphical test of the synchroneity of biozones in the upper Silurian of Estonia and Latvia with some implications for practical stratigraphy. Estonian Journal of Earth Sciences, 64 (4), 267-283.
  • 71. Kaljo, D., Grytsenko, V., Martma, T. and Mõtus, M.-A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences, 56 (4), 205-220.
  • 72. Kaljo, D., Kiipli, T. and Martma, T. 1997. Carbon isotope event markers through the Wenlock-Přídolí sequence at Ohesaare (Estonia) and Priekule (Latvia). Palaeogeography, Palaeoclimatology, Palaeoecology, 132 (1), 211-223.
  • 73. Kaljo, D., Martma, T., Männik, P. and Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Société géologique de France, 174 (1), 59-66.
  • 74. Kaltenböck, E. and Herndl, G.J. 1992. Ecology of amorphous aggregations (marine snow) in the Northern Adriatic Sea. IV. Dissolved nutrients and the autotrophic community associated with marine snow. Marine Ecology-Progress Series, 87, 147-147.
  • 75. Karl, D.M., Beversdorf, L., Björkman, K.M., Church, M.J., Martinez, A. and Delong, E.F. 2008. Aerobic production of methane in the sea. Nature Geoscience, 1 (7), 473-478.
  • 76. Kelts, K. and McKenzie, J. 1982. Diagenetic dolomite formation in Quaternary anoxic diatomiceous muds of Deep Sea Drilling Project Leg 64, Gulf of California. Initial Reports of the Deep Sea Drilling Program, 64, 553-570.
  • 77. Kempe, S. 1990. Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften, 77 (9), 426-427.
  • 78. Kempe, S. and Kaźmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de l’Institut océanographique (Monaco), 13, 61-117.
  • 79. Kendall, C.G. and Alsharhan, A.S. 2011. Coastal Holocene carbonates of Abu Dhabi, UAE: depositional setting, geomorphology, and role of cyanobacteria in micritization. In: Kendall, C.G. St.C., Alsharhan, A.S., Jarvis, I. and Stevens, T. (Eds), Quaternary carbonate and evaporite sedimentary facies and their ancient analogues. International Association of Sedimentologists Special Publication, 43, 205-220.
  • 80. Koren, T. 1993. Main event levels in the evolution of the Ludlow graptolites. Geological Correlation, 1, 44-52
  • 81. Koutsodendris, A., Brauer, A., Zacharias, I., Putyrskaya, V., Klemt, E., Sangiorgi, F. and Pross, J. 2015. Ecosystem response to human and climate-induced environmental stress on an anoxic coastal lagoon (Etoliko, Greece) since 1930 AD. Journal of Paleolimnology, 53 (3), 255-270.
  • 82. Kozłowski, W. 2003. Age, sedimentary environment and palaeogeographical position of the Late Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geologica Polonica, 53 (4), 341-357.
  • 83. Kozłowski, W. 2015. Eolian dust influx and massive whitings during the kozlowski/Lau Event: carbonate hypersaturation as a possible driver of the mid-Ludfordian Carbon Isotope Excursion. Bulletin of Geosciences, 90, 807-840.
  • 84. Kozłowski, W., Domańska-Siuda, J. and Nawrocki, J. 2014. Geochemistry and petrology of the upper Silurian greywackes from the Holy Cross Mountains (Central Poland): implications for the Caledonian history of the southern part of the Trans-European Suture Zone (TESZ). Geological Quarterly, 58 (1), 311-336.
  • 85. Kozłowski, W. and Munnecke, A. 2010. Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Łysogóry region (Rzepin section, Holy Cross Mountains, Poland). Facies, 56 (4), 615-633.
  • 86. Kozłowski, W. and Sobień, K. 2012. Mid-Ludfordian coeval car-bon isotope, natural gamma ray and magnetic susceptibility excursions in the Mielnik IG-1 borehole (Eastern Poland) - dustiness as a possible link between global climate and the Silurian carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 339, 74-97.
  • 87. Kranz, S.A., Gladrow, D.W., Nehrke, G., Langer, G. and Rosta, B. 2010. Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium. Limnology and Oceanography, 55 (6), 2563-2569.
  • 88. Kump, L.R. and Arthur, M.A. 1999. Interpreting carbon-isotope excursions: carbonates and organic matter. Chemical Geology, 161 (1), 181-198.
  • 89. Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S. and Sheehan, P.M. 1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeography, Palaeoclimatology, Palaeoecology 152, 173-187.
  • 90. Lalou, C. 1957. Studies on bacterial precipitation of carbonates in sea water. Journal of Sedimentary Research, 27 (2), 190-195.
  • 91. Lampitt, R., Wishner, K., Turley, C. and Angel, M. 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology, 116 (4), 689-702.
  • 92. LaPorte, D.F., Holmden, C., Patterson, W.P., Loxton, J.D., Melchin, M.J., Mitchell, C.E., Finney, S.C. and Sheets, H.D. 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 276 (1-4), 182-195.
  • 93. Lee, J. and Morse, J.W. 2010. Influences of alkalinity and p CO2 on CaCO3 nucleation from estimated Cretaceous com-position seawater representative of “calcite seas”. Geology, 38 (2), 115-118.
  • 94. Lehnert, O., Frýda, J., Buggisch, W., Munnecke, A., Nützel, A., Křiž, J. and Manda, S. 2007. δ13C records across the late Silurian Lau event: New data from middle palaeolatitudes of northern peri-Gondwana (Prague Basin, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 245 (1), 227-244.
  • 95. Long, J.S., Hu, C., Robbins, L.L., Byrne, R.H., Paul, J.H. and Wolny, J.L. 2017. Optical and biochemical properties of a southwest Florida whiting event. Estuarine, Coastal and Shelf Science, 196, 258-268.
  • 96. Lowenstein, T.K., Hardie, L.A., Timofeeff, M.N. and Demicco, R.V. 2003. Secular variation in seawater chemistry and the origin of calcium chloride basinal brines. Geology, 31 (10), 857-860.
  • 97. Lowenstein, T.K., Timofeeff, M.N., Brennan, S.T., Hardie, L.A. and Demicco, R.V. 2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science, 294(5544), 1086-1088.
  • 98. Loydell, D.K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal, 42 (5), 531-546.
  • 99. Loydell, D.K. and Frýda, J. 2011. At what stratigraphical level is the mid Ludfordian (Ludlow, Silurian) positive carbon isotope excursion in the type Ludlow area, Shropshire, England. Bulletin of Geosciences, 86 (2), 197-208.
  • 100. Macquaker, J.H., Keller, M.A. and Davies, S.J. 2010. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. Journal of Sedimentary Research, 80 (11), 934-942.
  • 101. Major, C., Ryan, W., Lericolais, G. and Hajdas, I. 2002. Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition. Marine Geology, 190 (1), 19-34.
  • 102. Manville, V. and Wilson, C. 2004. Vertical density currents: a review of their potential role in the deposition and interpretation of deep-sea ash layers. Journal of the Geological Society, 161 (6), 947-958.
  • 103. Martma, T., Brazauskas, A., Kaljo, D., Kaminskas, D. and Musteikis, P. 2010. The Wenlock-Ludlow carbon isotope trend in the Vidukle core, Lithuania, and its relations with oceanic events. Geological Quarterly, 49 (2), 223-234.
  • 104. Meister, P., Gutjahr, M., Frank, M., Bernasconi, S.M., Vasconcelos, C. and McKenzie, J.A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39, 563-566.
  • 105. Meister, P., Liu, B., Khalili, A., Böttcher, M.E. and Jørgensen, B.B. 2019. Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: An evaluation by reaction-transport modelling. Journal of Marine Systems, 200, 103227.
  • 106. Melchin, M.J. and Holmden, C. 2006a. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea-level change. GFF, 128 (2), 173-180.
  • 107. Melchin M.J. and Holmden C. 2006b. Carbon isotope chemostratigraphy in Arctic Canada: sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology234, 186-200.
  • 108. Middelburg, J.J., Vlug, T., Jaco, F. and Van der Nat, W. A. 1993. Organic matter mineralization in marine systems. Global and Planetary Change, 8 (1-2), 47-58.
  • 109. Minoletti, F., De Rafélis, M., Renard, M., Gardin, S. and Young, J. 2005. Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous-Paleocene transition: contribution of the separation technique to the study of Bidart section. Palaeogeography, Palaeoclimatology, Palaeoecology, 216 (1-2), 119-137.
  • 110. Modliński, Z., Szymański, B. and Teller, L. 2006. Litostratygrafia syluru polskiej części obniżenia perybałtyckiego - część lądowa i morska (N Polska). Przegląd Geologiczny, 54 (9), 787-796.
  • 111. Morita, R.Y. 1980. Calcite precipitation by marine bacteria. Geo-microbiology Journal, 2 (1), 63-82.
  • 112. Morse, J.W., Gledhill, D.K. and Millero, F.J. 2003. CaCO3 precipitation kinetics in waters from the great Bahama bank:: Implications for the relationship between bank hydrochemistry and whitings. Geochimica et Cosmochimica Acta, 67 (15), 2819-2826.
  • 113. Morse, J.W. and He, S. 1993. Influences of T, S and pCO2 on the pseudohomogeneous precipitation of CaCO3 from sea-water: implications for whiting formation. Marine Chemistry, 41 (4), 291-297.
  • 114. Morse, J.W., Millero, F.J., Thurmond, V., Brown, E. and Ostlund, H. 1984. The carbonate chemistry of Grand Bahama Bank waters: after 18 years another look. Journal of Geophysical Research: Oceans, 89 (C3), 3604-3614.
  • 115. Mucci, A. and Morse, J.W. 1983. The incorporation of Mg2+and Sr2+ into calcite overgrowths: influences of growth rate and solution composition. Geochimica et Cosmochimica Acta, 47 (2), 217-233.
  • 116. Müller, A. 2001. Geochemical expressions of anoxic conditions in Nordåsvannet, a land-locked fjord in western Norway. Applied Geochemistry, 16 (3), 363-374.
  • 117. Müller, G. and Blaschke, R. 1969. Zur Entstehung des Tiefsee-Kalkschlammes im Schwarzen Meer. Naturwissenschaften, 56 (11), 561-562.
  • 118. Munnecke, A., Calner, M., Harper, D.A. and Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296 (3), 389-413.
  • 119. Munnecke, A., Samtleben, C. and Bickert, T. 2003. The Ireviken Event in the lower Silurian of Gotland, Sweden - relation to similar Palaeozoic and Proterozoic events. Palaeogeography, Palaeoclimatology, Palaeoecology, 195 (1), 99-124.
  • 120. Nezlin, N.P., Polikarpov, I.G., Al-Yamani, F.Y., Rao, D.S. and Ignatov, A.M. 2010. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. Journal of Marine Systems, 82 (1-2), 47-60.
  • 121. Nielsen, M.R., Sand, K.K., Rodriguez-Blanco, J.D., Bovet, N., Generosi, J., Dalby, K.N. and Stipp, S.L.S. 2016. Inhibition of Calcite Growth: Combined Effects of Mg2+ and SO42-. Crystal Growth & Design, 16 (11), 6199-6207.
  • 122. Noble, P.J., Lenz, A.C., Holmden, C., Masiak, M., Zimmerman, M.K., Poulson, S.R. and Kozłowska, A. 2012. Isotope geochemistry and plankton response to the Ireviken (earliest Wenlock) and Cyrtograptus lundgreni extinction events, Cape Phillips Formation, Arctic Canada. In: Talent, J.A. (Ed.), Earth and Life, 631-652, Springer; Dordrecht.
  • 123. Peryt, T.M., Durakiewicz, T., Kotarba, M.J., Oszczepalski, S. and Peryt, D. 2012. Carbon isotope stratigraphy of the basal Zechstein (Lopingian) strata in Northern Poland and its global correlation. Geological Quarterly, 56 (2), 285-298.
  • 124. Pierre, C., Ortlieb, L. and Person, A. 1984. Supratidal evaporitic dolomite at Ojo de Liebre Lagoon; mineralogical and isotopic arguments for primary crystallization. Journal of Sedimentary Research, 54 (4), 1049-1061.
  • 125. Pilskaln, C.H. and Pike, J. 2001. Formation of Holocene sedimentary laminae in the Black Sea and the role of the benthic flocculent layer. Paleoceanography, 16 (1), 1-19.
  • 126. Poprawa, P., Šliaupa, S., Stephenson, R. and Lazauskiene, J. 1999. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from sub-sidence analysis. Tectonophysics, 314 (1), 219-239.
  • 127. Porębska, E., Kozłowska-Dawidziuk, A. and Masiak, M. 2004. The lundgreni event in the Silurian of the East European Platform, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 213 (3-4), 271-294.
  • 128. Porębski, S.J. and Podhalańska, T. 2019. Ordovician-Silurian lithostratigraphy of the East European Craton in Poland, Annales Societatis Geologorum Poloniae, 87 (5), 95-104.
  • 129. Porębski, S.J., Prugar, W. and Zacharski, J. 2013. Silurian shales of the East European Platform in Poland - some exploration problems. Przegląd Geologiczny, 61 (11), 630-638.
  • 130. Ransom, B., Shea, K.F., Burkett, P.-J., Bennett, R.H., and Baerwald, R. 1998. Comparison of pelagic and nepheloid layer marine snow: implications for carbon cycling. Marine Geology, 150, 39-50.
  • 131. Reichel, T. and Halbach, P. 2007. An authigenic calcite layer in the sediments of the Sea of Marmara - A geochemical marker horizon with paleoceanographic significance. Deep Sea Research Part II: Topical Studies in Oceanography, 54 (11), 1201-1215.
  • 132. Ridgwell, A. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. Marine Geology, 217 (3), 339-357.
  • 133. Ridgwell, A. and Zeebe, R.E. 2005. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth and Planetary Science Letters, 234 (3), 299-315.
  • 134. Riding, R. 1982. Cyanophyte calcification and changes in ocean chemistry. Nature, 299 (5886), 814-815.
  • 135. Riebesell, U. 1991. Particle aggregation during a diatom bloom I. Physical aspects. Marine Ecology Progress Series, 69, 273-280.
  • 136. Robbins, L. and Blackwelder, P. 1992. Biochemical and ultra-structural evidence for the origin of whitings: a biologically induced calcium carbonate precipitation mechanism. Geo-logy, 20 (5), 464-468.
  • 137. Robbins, L., Tao, Y. and Evans, C. 1997. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology, 25 (10), 947-950.
  • 138. Rosenbaum, J. and Sheppard, S.M. 1986. An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50 (6), 1147-1150.
  • 139. Rubin, M., Berman-Frank, I. and Shaked, Y. 2011. Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nature Geoscience, 4 (8), 529-534.
  • 140. Saitoh, M., Ueno, Y., Isozaki, Y., Shibuya, T., Yao, J., Ji, Z., Shozugawa, K., Matuso, M.and Yoshida, N. 2015. Authigenic carbonate precipitation at the end-Guadalupian (Middle Permian) in China: implications for the carbon cycle in ancient anoxic oceans. Progress in Earth and Planetary Science, 2 (1), 41-60.
  • 141. Samtleben, C., Munnecke, A. and Bickert, T. 2000. Development of facies and C/O-isotopes in transects through the Ludlow of Gotland: evidence for global and local influences on a shallow-marine environment. Facies, 43 (1), 1-38.
  • 142. Sánchez-Baracaldo, P. 2015. Origin of marine planktonic cyanobacteria. Scientific Reports, 5, 17418.
  • 143. Schimmelmann, A., Lange, C. B., Schieber, J., Francus, P., Ojala, A. E. and Zolitschka, B. 2016. Varves in marine sediments: a review. Earth-Science Reviews, 159, 215-246.
  • 144. Shinn, E.A., Steinen, R.P., Lidz, B.H. and Swart, P.K. 1989. Whitings, a Sedimentologic Dilemma. Journal of Sedimentary Research, 59 (1), 147-161.
  • 145. Sondi, I. and Juračić, M. 2010. Whiting events and the formation of aragonite in Mediterranean Karstic Marine Lakes: new evidence on its biologically induced inorganic origin. Sedimentology, 57 (1), 85-95.
  • 146. Spiridonov, A., Stankevič, R., Gečas, T., Šilinskas, T., Brazauskas, A., Meidla, T., Ainsaar, L., Musteiklis, P. and Radzevičius, S. 2017. Integrated record of Ludlow (Upper Silurian) oceanic geobioevents - Coordination of changes in conodont, and brachiopod faunas, and stable isotopes. Gondwana Research, 51, 272-288.
  • 147. Stachowitsch, M., Fanuko, N. and Richter, M. 1990. Mucus aggregates in the Adriatic Sea: an overview of stages and occurrences. Marine Ecology, 11 (4), 327-350.
  • 148. Stoffers, P. and Müller, G. 1978. Mineralogy and lithofacies of Black Sea sediments, Leg 42B deep sea drilling project. Initial Reports of the Deep Sea Drilling Project, 42 (2), 373-411.
  • 149. Sweeney, M., Turner, P. and Vaughan, D. 1987. The Marl Slate: a model for the precipitation of calcite, dolomite and sulfides in a newly formed anoxic sea. Sedimentology, 34 (1), 31-48.
  • 150. Taylor, M., Drysdale, R. and Carthew, K. 2004. The formation and environmental significance of calcite rafts in tropical tufa- depositing rivers of northern Australia. Sedimentology, 51 (5), 1089-1101.
  • 151. Teller, L. 1966. Two new species of Monograptidae from the Upper Ludlovian of Poland. Bulletin de l’Academie Polonaise des Sciences, II, 14, 553-558.
  • 152. Thompson, J.B. 2000. Microbial whitings, In: Riding, R.E. and Awramik, S.M. (Eds), Microbial sediments, 250-260. Springer; Berlin, Heidelberg.
  • 153. Thompson, J.B., Schultze-Lam, S., Beveridge, T.J. and Des Marais, D.J. 1997. Whiting events: biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and oceanography, 42 (1), 133-141.
  • 154. Tomczyk, H. 1970. The Silurian. In: Sokołowski, S. (Ed.), The Geology of Poland, 237-320. Wydawnictwa Geologiczne; Warsaw.
  • 155. Tomczyk, H. 1973. Silurian. In: Szyperko-Teller, A. (Ed.), Profile głębokich otworów wiertniczych Instytutu Geologicznego: Pasłęk IG-1, 57-95. Wydawnictwa Geologiczne; Warszawa.
  • 156. Topulos, T. 1976. Results of geophisical study - Lower Palaeozoic and Precambrian. In: Witkowski, A. (Ed.), Profile głębokich otworów wiertniczych Instytutu Geologicznego: Żarnowiec IG 1, 156-163. Wydawnictwa Geologiczne; Warszawa. [In Polish]
  • 157. Topulos, T. 1977. Characteristic of the Silurian in the Peribaltic Syneclise based on geophysical reaserch. Geological Quarterly, 21 (3), 437-450. [In Polish]
  • 158. Tourney, J. and Ngwenya, B.T. 2009. Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology, 262 (3), 138-146.
  • 159. Tribble, J.S. and Mackenzie, F.T. 1998. Recrystallization of Magnesian Calcite Overgrowths on Calcite Seeds Suspended in Seawater. Aquatic Geochemistry, 4 (3), 337-360.
  • 160. Troy, P.J., Li, Y.-H. and Mackenzie, F.T. 1997. Changes in Surface Morphology of Calcite Exposed to the Oceanic Water Column. Aquatic Geochemistry, 3 (1), 1-20.
  • 161. Tsegelnjuk, P.D. 1976. Late Silurian and Early Devonian monograptids from the South-Western margin of the East European Platform. In: Shulga, P.L. (Ed.), Palaeontology and stratigraphy of the Upper Precambrian and Lower Paleozoic of the SW part of the East European Platform, 9, 1-133. Naukova Dumka; Kiev. [In Russian]
  • 162. Underwood, C.J., Crowley, S., Marshall, J. and Brenchley, P. 1997. High-resolution carbon isotope stratigraphy of the basal Silurian Stratotype (Dob’s Linn, Scotland) and its global correlation. Journal of the Geological Society, 154 (4), 709-718.
  • 163. Urbanek, A. 1993. Biotic crises in the history of Upper Silurian graptoloids: a palaeobiological model. Historical Biology, 7 (1), 29-50.
  • 164. Urbanek, A. 1997. Late Ludfordian and early Přídolí monograptids from the Polish Lowland. Acta Palaeontologica Polonica, 56, 87-231.
  • 165. van der Jagt, H., Friese, C., Stuut, J.B.W., Fischer, G. and Iversen, M.H. 2018. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnology and Oceanography, 63 (3), 1386-1394.
  • 166. Vasconcelos, C., McKenzie, J.A., Warthmann, R. and Bernasconi, S.M. 2005. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology, 33 (4), 317-320.
  • 167. Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P., Pavlova, G., Greinert, J., Kutterolf, S. and Eisenhauer, A. 2008. Silicate weathering in anoxic marine sediments. Geochim. Cosmochim. Acta72, 3067-3090.
  • 168. Wells, A. and Illing, L. 1964. Present-day precipitation of calcium carbonate in the Persian Gulf. Developments in sedimentology, 1, 429-435.
  • 169. Wenzel, B. and Joachimski, M.M. 1996. Carbon and oxygen isotopic composition of Silurian brachiopods (Gotland/Sweden): palaeoceanographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 122 (1-4), 143-166.
  • 170. Wignall, P., and Newton, R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. American Journal of Science, 298 (7), 537-552.
  • 171. Wilkin, R. and Barnes, H. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61 (2), 323-339.
  • 172. Wilkin, R.T., Barnes, H.L. and Brantley, S.L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60, 3897-3912.
  • 173. Wilson, P.A. and Roberts, H.H. 1992. Carbonate-periplatform sedimentation by density flows: a mechanism for rapid off-bank and vertical transport of shallow-water fines. Geology, 20 (8), 713-716.
  • 174. Wollast, R., Garrels, R. and Mackenzie, F. 1980. Calcite-seawater reactions in ocean surface waters. American Journal of Science, 280 (9), 831-848.
  • 175. Wright, D.T. and Oren, A. 2005. Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiology Journal, 22 (1-2), 27-53.
  • 176. Wu, Y.S., Yu, G.L., Li, R.H., Song, L.R., Jiang, H.X., Riding, R., Liu, L.-J., Liu, D.-J. and Zhao, R. 2014. Cyanobacterial fossils from 252 Ma old microbialites and their environ-mental significance. Scientific reports, 4 (1), 1-5.
  • 177. Wu, Y.-S., Yu, G.-L., Jiang, H.-X., Liu, L.-J. and Zhao, R. 2016. Role and lifestyle of calcified cyanobacteria (Stanieria) in Permian-Triassic boundary microbialites. Palaeogeography, Palaeoclimatology, Palaeoecology, 448, 39-47.
  • 178. Yao, W. and Millero, F.J. 1995. The chemistry of the anoxic waters in the Framvaren Fjord, Norway. Aquatic Geochemistry, 1 (1), 53-88.
  • 179. Yates, K. and Robbins, L. 2001. Microbial lime-mud production and its relation to climate change. In: Gerhard, L.C., Harrison, W.E. and Hanson, B.M. (Eds), Geological Perspectives of Global Climate Change. AAPG Studies in Geology, 47, 267-283.
  • 180. Yates, K.K. and Robbins, L.L. 1998. Production of carbonate sediments by a unicellular green alga. American Mineralogist, 83 (11), 1503-1509.
  • 181. Younes, H., Calner, M. and Lehnert, O. 2017. The first continuous δ13C record across the Late Silurian Lau Event on Gotland, Sweden. GFF, 139 (1), 63-69.
  • 182. Zeebe, R.E. and Westbroek, P. 2003. A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochemistry, Geophysics, Geosystems, 4 (12), 1-26.
  • 183. Zenkner, L.J. and Kozłowski, W. 2017. Anomalous massive water- column carbonate precipitation (whitings) as another factor linking Silurian oceanic events. GFF, 139 (3), 184-194.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-65652a25-7356-4f19-8daf-1bbd89b03f7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.