PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Porous titanium scaffolds with modified surface: in vitro cell biology assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Interaction of host cells with a biomaterial surface is important for biocompatibility and thus is essential for biomedical applications. Therefore investigations are undertaken to scrutinize for an appropriate surface coating with physical and chemical properties minimizing undesirable activation of immunological response. For this the current study was aimed at examining the effects of different surface modifications of titanium by its coating with ceramic materials - hydroxyapatite, bioglass and CaO-SiO2on osteoblast morphology and secretory activity. Titanium is known for its excellent mechanical properties but its surface has low bioactivity. We report that CaO-SiO2coating decreased a number of attached osteoblasts and altered their morphology. Moreover, the ceramic coatings temporarily upregulated release of pro-inflammatory cytokines IL-6 (all of them) and TNF-α (CaO-SiO2). However, overall the levels of the cytokines were low. In contrast, levels of neutrophil-attracting chemokine IL-8 were the highest. IL-8 was produced mostly by cells incubated with hydroxyapatite titanium coating in contrary to those incubated with either bioglass or CaO-SiO2titanium modifications. In conclusion, the titanium coated with ceramics such as hydroxyapatite or bioglass had the best effect on cell adhesion; however, hydroxyapatite might potentially stimulate destructive neutrophils while CaO-SiO2-coating has a negative effect on cell adhesion.
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 37 poz., wykr., zdj.
Twórcy
  • Academy of Physical Education, Faculty of Anatomy, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Jagiellonian University, Collegium Medicum, Department of Cytobiology, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Jagiellonian University, Department of Evolutionary Immunobiology, Institute of Zoology, Krakow, Poland
Bibliografia
  • [1] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000, 21 (7), 667-81.
  • [2] Hazan R., Brener R., Oron U. Bone growth to metal implants is regulated by their surface chemical properties. Biomaterials 1993, 14 (8), 570-4.
  • [3] Yazici M., Emans J. Fusionless instrumentation systems for congenital scoliosis: expandable spinal rods and vertical expandable prosthetic titanium rib in the management of congenital spine deformities in the growing child. Spine (Phila Pa 1976) 2009, 34 (17), 1800-7.
  • [4] Goldstein W. M., Branson J. J. Modular femoral component for conversion of previous hip surgery in total hip arthroplasty. Orthopedics 2005, 28 (9 Suppl), s1079-84.
  • [5] Muller U., Imwinkelried T., Horst M., Sievers M., Graf-Hausner U. Do human osteoblasts grow into open-porous titanium? Eur Cell Mater 2006, 11, 8-15.
  • [6] Ohgushi H., Okumura M., Yoshikawa T., Inoue K., Senpuku N., Tamai S., Shors E. C. Bone formation process in porous calcium carbonate and hydroxyapatite. J Biomed Mater Res 1992, 26 (7), 885-95.
  • [7] Liu X., Morra M., Carpi A., Li B. Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother 2008, 62 (8), 526-9.
  • [8] Holmes R. E., Bucholz R. W., Mooney V. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study. J Orthop Res 1987, 5 (1), 114-21.
  • [9] Chou L., Firth J. D., Uitto V. J., Brunette D. M. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J Cell Sci 1995, 108 ( Pt 4), 1563-73.
  • [10] Lee S. J., Choi J. S., Park K. S., Khang G., Lee Y. M., Lee H. B. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials 2004, 25 (19), 4699-707.
  • [11] Ruan J., Grant M. H. Biocompatibility evaluation in vitro. Part I: Morphology expression and proliferation of human and rat osteoblasts on th ebiomaterials. J Cent South Univ Technol 2001, 8 (1), 1-8.
  • [12] Kanczler J. M., Oreffo R. O. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 2008, 15, 100-14.
  • [13] Torricelli P., Fini M., Giavaresi G., Borsari V., Carpi A., Nicolini A., Giardino R. Comparative interspecies investigation on osteoblast cultures: data on cell viability and synthetic activity. Biomed Pharmacother 2003, 57 (1), 57-62.
  • [14] Majno G., Joris I. Cells, tissues, and disease: principles of general pathology. Blackwell: Oxford,2004.
  • [15] Medzhitov R., Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol 2009, 9 (10), 692-703.
  • [16] Kolaczkowska E. Zapalenie (ostre) jako reakcja korzystna dla organizmu – historia badań a najnowsze osiągnięcia. Kosmos 2007, 56 (1-2), 27-38.
  • [17] Rose-John S., Scheller J., Elson G., Jones S. A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006, 80 (2), 227-36.
  • [18] Takei H., Pioletti D. P., Kwon S. Y., Sung K. L. Combined effect of titanium particles and TNF-alpha on the production of IL-6 by osteoblast-like cells. J Biomed Mater Res 2000, 52 (2), 382-7.
  • [19] Caetano-Lopes J., Canhao H., Fonseca J. E. Osteoimmunology-the hidden immune regulation of bone. Autoimmun Rev 2009, 8 (3), 250-5.
  • [20] Bilbe G., Roberts E., Birch M., Evans D. B. PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 1996, 19 (5), 437-45.
  • [21] Scislowska-Czarnecka A., Pamula E., Plytycz B., Kolaczkowska E. Effect of biomaterials on adhesion and activity of murine fibroblasts L929. Engineering of Biomaterials 2008, 81-84, 83-86.
  • [22] Pamula E., Dobrzynski P., Szot B., Kretek M., Krawciow J., Plytycz B., Chadzinska M. Cytocompatibility of aliphatic polyesters-in vitro study on fibroblasts and macrophages. J Biomed Mater Res A 2008, 87 (2), 524-35.
  • [23] Kolaczkowska E., Barteczko M., Plytycz B., Arnold B. Role of lymphocytes in the course of murine zymosan-induced peritonitis. Inflamm Res 2008, 57 (6), 272-8.
  • [24] Tirrelli M., Kokkoli E., Biesalski M. The role of surface science in bioengineered materials. Surface Science 2002, 500, 61-83.
  • [25] Vezeau P. J., Koorbusch G. F., Draughn R. A., Keller J. C. Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium. J Oral Maxillofac Surg 1996, 54 (6), 738-46.
  • [26] Stanford C. M., Keller J. C., Solursh M. Bone cell expression on titanium surfaces is altered by sterilization treatments. J Dent Res 1994, 73 (5), 1061-71.
  • [27] Tang L., Ugarova T. P., Plow E. F., Eaton J. W. Molecular determinants of acute inflammatory responses to biomaterials. J Clin Invest 1996, 97 (5), 1329-34.
  • [28] Martin J. Y., Schwartz Z., Hummert T. W., Schraub D. M., Simpson J., Lankford J., Jr., Dean D. D., Cochran D. L., Boyan B. D. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG-63). J Biomed Mater Res 1995, 29 (3), 389-401.
  • [29] Hambleton J., Schwartz Z., Khare A., Windeler S. W., Luna M., Brooks B. P., Dean D. D., Boyan B. D. Culture surfaces coated with various implant materials affect chondrocyte growth and metabolism. J Orthop Res 1994, 12 (4), 542-52.
  • [30] Davies J. E. Mechanisms of endosseous integration. Int J Prosthodont 1998, 11 (5), 391-401.
  • [31] Borsari V., Giavaresi G., Fini M., Torricelli P., Tschon M., Chiesa R., Chiusoli L., Salito A., Volpert A., Giardino R. Comparative in vitro study on a ultra-high roughness and dense titanium coating. Biomaterials 2005, 26 (24), 4948-55.
  • [32] Kolaczkowska E., Seljelid R., Plytycz B. Role of mast cells in zymosan-induced peritoneal inflammation in Balb/c and mast cell-deficient WBB6F1 mice. J Leukoc Biol 2001, 69 (1), 33-42.
  • [33] Soehnlein O., Weber C., Lindbom L. Neutrophil granule proteins tune monocytic cell function. Trends Immunol 2009, 30 (11), 538-46.
  • [34] Fritz E. A., Glant T. T., Vermes C., Jacobs J. J., Roebuck K. A. Titanium particles induce the immediate early stress responsive chemokines IL-8 and MCP-1 in osteoblasts. J Orthop Res 2002, 20 (3), 490-8.
  • [35] Mosser D. M., Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008, 226, 205-18.
  • [36] Szaraniec B., Ziąbka M., Chłopek J., Papargyri S., Tsipas D.: Obtaining of porous titanium for medical implants. Engineering of Biomaterials 2008, vol.11, no.81–84, 49–52
  • [37] Szaraniec B., Chłopek J., Dynia G. Porowate biomateriały tytanowe modyfikowane ceramiką bioaktywną. Inżynieria Materiałowa 2009, 30 (5), 449-451.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-655edadd-09ee-4919-87d8-44100fc7902d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.