Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is imperative to comprehend the factors that contribute to traffic crashes if they are to be reduced effectively. This study aimed to develop a crash frequency model of Indonesian inter-urban freeways. Data was collected from four inter-urban freeway toll roads. The freeway toll-road operators provide traffic volumes, geometric characteristics, and crash data. To develop the crash frequency model, the author performed a negative binomial regression analysis. The predictors included certain highway geometric factors and the hourly traffic volume. The results show that the frequency of crashes was significantly associated with the volume of traffic per hour and geometric factors. Specifically, section length, hourly traffic volume, and the width of the roadway and outer shoulder positively impacted crash frequency, while horizontal curve and inner shoulder width had a negative impact. Moreover, road divider (median) type and time of day had significant impacts on inter-urban freeway crash occurrences. The results have important implications, as they reveal the relationship between freeway design parameters and traffic crash frequency. This knowledge will aid the development of new design methods that consider safety explicitly.
Czasopismo
Rocznik
Tom
Strony
71--80
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- Universitas Negeri Semarang, Faculty of Engineering, Department of Civil Engineering; Kampus Sekaran, Gunung Pati, Semarang, Indonesia
Bibliografia
- 1. The Government of Indonesia. The National Medium-Term Development Plan 2020-2024. 2020. 7 p.
- 2. WHO. Global status report on road safety 2018. 2018. 424 p.
- 3. Gwynn, D. Relationship of accident rates and accident involvements with hourly volumes. Traffic Quarterly. 1967. Vol. 21(3). P. 407-418.
- 4. Ceder, A & Livneh, M. Relationships between road accidents and hourly traffic flow-I. Analyses and interpretation. Accident Analysis and Prevention. 1982. Vol. 14(1). P. 19-34.
- 5. Persaud, B & Dzbik, L. Accident prediction models for freeways. Transport Res Record. 1993. Vol. 1401. P. 55-60.
- 6. Hadi, M.A. & Aruldhas, J. & Chow, L.F. & Wattleworth, J.A. Estimating safety effects of crosssection design for various highway types using negative binomial regression. Transportation Research Record. 1995. Vol. 1500. P. 169-177.
- 7. Mensah, A. & Hauer, E. Two problems of averaging arising in the estimation of the relationship between accidents and traffic flow. Transportation Research Record. 1998. Vol. 1635. P. 37-43.
- 8. Martin, J.L. Relationship between crash rate and hourly traffic flow on interurban motorways. Accident Analysis and Prevention. 2002. Vol. 34. P. 619-629.
- 9. Frantzeskakis, J.M. & Iordanis, D.I. Volume-to-capacity ratio and traffic accidents on interurban four-lane highways in Greece. Transportation Research Record. 1987. Vol. 1112. P. 29-38.
- 10. Lord, D. & Manar, A. & Vizioli, A. Modeling crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway segments. Accident Analysis and Prevention. 2005. Vol. 37. P. 185-199.
- 11. Cafiso, S. & Di Graziano, A. & Di Silvestro, G. & La Cava, G. & Persaud, B. Development of comprehensive accident models for two-lane rural highways using exposure, geometry, consistency and context variables. Accident Analysis and Prevention. 2010. Vol. 42(4). P. 1072-1079.
- 12. Miaou, S.P. & Lump, H. Modeling vehicle accidents and highway geometric design relationships. Accident Analysis and Prevention. 1993. Vol. 25(6). P. 689-709.
- 13. Shankar, V. & Mannering, F. & Barfield, W. Effect of roadway geometrics and environmental factors on rural freeway accident frequencies. Accident Analysis and Prevention. 1995. Vol. 27(3). P. 371-389.
- 14. Poch, M. & Mannering, F. Negative binomial analysis of intersection accident frequencies. Journal of Transportation Engineering. 1996. Vol. 122. P. 105-113.
- 15. Mohamedshah, Y.M. & Paniati, J.F. & Hobeika, A.G. Truck accident models for interstates and two-lane rural roads. Transportation research record. 1993. Vol. 1407. P. 35-41.
- 16. Hauer, E. Cause, effect, and regression in road safety: A case study. Accident Analysis and Prevention. 2010. Vol. 42(4). P. 1128-1135.
- 17. Team RDC. R: A Language and Environment for Statistical Computing. 2020.
- 18. Greene, W.H. Econometric Analysis, 4th Ed. 2000.
- 19. Cameron, A.C. Trivedi, P.K. Econometric models based on count data. Comparisons and applications of some estimators and tests. Journal of Applied Econometrics. 1986. Vol. 1(1). P. 29-53.
- 20. Cameron, A.C. Trivedi PK. Regression-based tests for over-dispersion in the Poisson model. Journal of Econometrics. 1990. Vol. 46(3). P. 347-364.
- 21. Miaou, S.P. & Jin, J. Bayesian ranking of sites for engineering safety improvements: Decision parameter, treatability concept, statistical criterion, and spatial dependence. Accident Analysis and Prevention. 2005. Vol. 37. P. 699-720.
- 22. Maher, M.J. & Summersgill, I. A comprehensive methodology for the fitting of predictive accident models. Accident Analysis and Prevention. 1996. Vol. 28(3). P. 281-296.
- 23. Abdel-Aty, M.A. & Radwan, A.E. Modeling traffic accident occurrence and involvement. Accident Analysis and Prevention. 2000. Vol. 32(5). P. 633-642.
- 24. Jovanis, P.P. & Chang, H.L. Modeling the relationship of accidents to miles traveled. Transportation Research Record. 1986. Vol. 1068. P. 42-51.
- 25. Tjahjono, T. The effect of geometric variables on the risk of accidents on Indonesian toll roads. Proceedings of the Eastern Asia Society for Transportation Studies. 2007. Vol. 6. DOI: 10.11175/eastpro.2007.0.342.0.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-654f53bd-d950-4bc8-8325-9fd32bfb8535
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.