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AbstrAct

Very often, the operation of diagnostic systems is related to the evaluation of process functionality, where the diagnostics 
is carried out using reference models prepared on the basis of the process description in the nominal state. The main 
goal of the work is to develop a hierarchical gas turbine reference model for the estimation of start-up parameters 
based on multi-layer perceptron neural networks. A functional decomposition of the gas turbine start-up process was 
proposed, enabling a modular analysis of selected parameters of the process. Real data sets obtained from observations 
of the turbo-generator set located on a North Sea platform were used.
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introduction

Gas turbine (GT) diagnostics is a complex task due to its 
dynamic nature and nonlinear performance characteristics, 
which makes it a difficult exercise that is therefore studied 
by many researchers. GTs are the basic type of turbines used 
in power industry systems. Effectiveness of their operation 
is fundamental [1-2]. A GT should ensure safe, reliable, fast 
and flexible operation also in transient states, i.e., during 
the start-up phase. Classical diagnosis methods compare 
observed measurement against a fixed threshold. The new 
proposed method allows more accurate monitoring, closer to 
the operating point, by comparing the predicted and observed 
measurements. This system is presented in Fig. 1.

Fig. 1. Scheme of the system of residual generation
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The main goal of the research is to build and analyse 
a reference model of the correct start-up of the GT and 
its decomposition.  The article presents the hierarchical 
architecture of such a model and a method of estimating 
selected parameters using neural networks modules.  
Moreover, it was assumed that the developed reference model 
would be based on the simplest possible structure of the neural 
network, utilizing a minimum number of inputs in order to 
reduce the computational complexity of the neural network 
learning algorithm. 

Computational models for the diagnosis and forecasting 
of GT operation during the start-up phase pose particular 
difficulties, because it is a high-power device and physical 
phenomena occur that are extremely non-stationary and 
often exceed load limits [3]. Therefore, changes in the turbine 
start-up parameters should be monitored to determine the 
causes of faults that prevent the GT from starting properly. The 
literature often emphasizes the benefits of having a reference 
model of the system (RMS) of the GT start-up. This article is 
focused on this issue. 

In future research, the results from the RMS can be used 
to diagnose a failed GT start-up, help to assess the GT ’s 
technical condition, and predict its future failures. The 
paper presents the model architecture and the method for 
estimating the specified parameters. Measurements obtained 
from experimental trials on a chosen machine are used to 
demonstrate that the proposed approach is practical and 
useful. The results confirm the effectiveness of the proposed 
model. 

research goal

The aim of the article is to present the method of creating 
a  reference model for the proper launch of a GT. After 
observing the GT start-up, the process was decomposed, 
taking into account only selected parameters for estimation. 
These are the parameters of the GT control system: guide vane 
command (GV_C); bleed valve command (BV_C), pressure 
compressor discharge (PCD); normalized power turbine 
speed (NPT); fuel control valve command (FCV_C); fuel valve 
differential pressure (FV_ DP); and inlet air filter differential 
pressure (IAF_DP). These selected process parameters finally 
affect the FCV_C. Safety parameters were not considered in 
the deliberations.

The start-up of a modern power plant GT is carried out 
with a procedure popularly called “one button” and lasts 
from several dozen seconds to 2‒3 minutes depending on the 
turbine size and application. The automatic procedure adapts 
the start-up phases to the current environmental conditions. 
Moreover, the values of the parameters of individual start-up 
phases depend on the quality of operation of individual 
component devices of the power unit. In most cases, the 
start-up of the machine is successful. 

However, there are situations of unsuccessful starting and 
stopping of the machine in different phases of the start-up. 
The engineer-operator is then tasked with finding the root 

cause and resolving it. For this purpose, he needs a correct 
start-up pattern, which shows not only the final start-up 
effect (the correct operation of the entire machine), but also 
the processes of achieving the parameters that end individual 
start-up phases and obtaining a “permit” to move to the next 
phase. The final phase consists in fuel valve control, which is 
very important not only for the start-up but also for normal 
sea operation [4]. Failure to achieve the correct values of these 
parameters in any phase causes the start-up procedure to stop. 
This failure is noticed as a difference (residual) between the 
current measured values and the correct values that exceeds 
the limit. The engineer-operator should indicate the causes of 
failure based on the analysis of differences in the residuals. 
The lack of a pattern of the correct path of the boot-up 
parameters makes it difficult and sometimes impossible to 
find differences and to explain the reasons for the collapse 
in the start-up strategy.

Comparison between corresponding measured and pattern 
values is the basis for further analysis of the time-dependent 
parameter trends of the machine start-up phases. For the 
purpose of this analysis, the authors have decided to apply 
the methods of artificial neural networks.

This model is composed of a proper simple individual 
start-up phase neural model to ensure a universal modular 
base start-up model. In order to apply it to any other specific 
turbine it is necessary only to update the neural modules or 
its structure. This is an advantage of the proposed pattern 
modular configuration.

related works

For industrial gas turbine (IGT) systems, classical 
(stationary or non-stationary) dynamic models described by 
state variables are difficult to obtain. They usually do not fully 
capture the detailed physical characteristics of the start-up 
operations due to the complexity of the structure, auxiliary 
equipment and control system. Linearization methods and 
laws of physics, principles of thermodynamics, and energy 
balance equations are used in constructing IGT dynamic 
models [3, 5-7]. However, this process is time-consuming and 
limited to specific ranges of operating and environmental 
conditions [8].

Artificial intelligence methods have been widely used in 
the simulation and modelling of industrial systems [9]. They 
provide an alternative to classic computational methods. 
The black-box models, such as artificial neural networks 
(ANN), are widely used to predict and monitor the dynamics 
of industrial equipment and systems due to their nonlinear 
and non-parametric properties [10-11]. 

The ANN provides an appropriate solution in situations 
where data are characterized by irregularity and diversity 
caused, for example, by external exogenous factors. They are 
able to learn patterns while acquiring the ability to generalize 
knowledge. There are many works using different ANN 
architectures for computer-based GT models during start-up 
operations. These can be multi-layer perceptron (MLP) [12], 
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recurrent neural network (RNN), deep neural network 
(DNN), radial basis function (RBF), nonlinear auto-regressive 
moving average with exogenous inputs (NARMAX), and 
nonlinear autoregressive exogenous models (NARX) [13]. 
A review of existing solutions applied to GT performance 
diagnosis and prediction can be found in the work [14]. The 
authors of the paper emphasize that the proposed models are 
satisfactorily able to capture the system dynamics during GT 
start-up operations and predict its behaviour. However, the 
conventional ANN methodology provides limited insight 
into the physical phenomena of the system under different 
operating conditions, and is consequently not robust to 
uncertainties. Therefore, hybrid versions of ANN and other 
systems, such as fuzzy systems, are often used. A combination 
of the adaptive neuro-fuzzy inference system (ANFIS) allows 
one to benefit from both fuzzy rules - e.g., expert knowledge 
about known input or output distributions - and ANN for 
nonlinear and nonparametric estimation [15-16]. 

There are methods based on creating a graphical 
representation of the physical system, such as the bond graph 
[17]. This graphical representation increases one’s insight 
into systems behaviour and understanding of the energy 
transfer between the inner components. The authors present 
the benefits and the results confirm the effectiveness of the 
proposed approach in detailed performance prediction of 
the GT in the start-up phase. The paper [18] addresses the 
problem of estimating the internal parameters of a GT, such 
as the temperature in the combustion chamber, using a neural 
network. This is a very important parameter that was used in 
the control system. The results show that the neural network 
estimates this parameter much more accurately than the 
available method using nonlinear equations.

Neural networks as a tool for the prediction of technical 
conditions are shown as a novel solution [19-20], which 
allows not only the isolation of known anomalies, but also 
the detection of previously unobserved events. The authors 
of [21] propose to use this feature for an advanced condition 
monitoring system for a GT. As well as monitoring known 
anomalies (e.g., tracking actuator position discrepancies), it 
also tracks previously unobserved states (e.g., a spike in the 
pressure reading from a compressor at a constant machine 
load).

The problem of predicting the compressor characteristics 
of the turbine-generator system was discussed in [22]. Much 
attention was paid to the dynamic states of the system, in 
which the compressor steering wheel control affects the 
operation of the entire machine. The equations describing 
the system model are solved numerically and the results are 
compared with actual readings from the object. The use of 
an ANN to build a machine efficiency model was proposed 
in the work [23], with the exception that accurate estimation 
is only possible in a narrow range of operation and to extend 
this range more networks should be used.

In this particular work, it is theorized that it is most 
beneficial to train neural networks that perform more 
functions rather than a single one that attempts to perform 
all tasks, such as efficiency assessment, fault detection or 

prediction. The effectiveness of the estimation methods using 
ANN depends on the accuracy, quantity and quality of the 
training sets. These data can be determined from physical 
models or obtained experimentally. 

MotiVations

The following considerations motivated the approach 
proposed in this work:
•	 the need to diagnose the technical condition of the GT 

and the wear and tear of the equipment,
•	 extending the classic diagnosis online methods to new 

bespoke fault models,
•	 the need to diagnose unsuccessful GT start-ups,
•	 the need to monitor the GT start-up system,
•	 the existing algorithms are insufficient and there is a need 

to find new solutions, as the problem is still relevant,
•	 the complexity of the processes occurring in the start-up 

phase is so great that the use of classical computational 
models is burdened with large modelling errors,

•	 simple solutions are needed that can be easily implemented 
in IGTs running in real time. 
Existing solutions based on deep or recurrent networks 

are more complex and labour-intensive for industrial 
implementation.

noVel eleMents

The novel elements of the proposed approach can be 
summarized as follows:
•	 designing a hierarchical architecture for the IGT reference 

start-up model using ANN,
•	 decomposition of the GT start-up process into the sets of 

primary and secondary parameters,
•	 the proposed model is functional, gives the possibility of 

easy adaptation in case of changing the type of fuel (liquid, 
volatile) and using a different type of turbine (e.g., DLN, 
single shaft, compressor set),

•	 the designing of individual neural modules (estimators of 
selected parameters) and training them with a raw data 
set obtained in the start-up phase, during the normal state 
of GT operation,

•	 the designing of a model which can be easily extended 
with further modules for the estimation of additional 
parameters of the system,

•	 the modularity of the proposed system provides easy 
relocation of the modules. Non-modular design would 
not be easy to adapt when there is a need to change system 
components,

•	 the modularity of the architecture facilitates 
implementation in IGT.
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description of gas turbine and its 
start-up process

The turbine generator described here has available power 
of 11.350 kWe (at 15°C ambient temperature and placed at sea 
level). It is a twin-shaft engine. It has an annular combustion 
chamber with 21 conventional fuel injectors and a single 
touch ignitor. The normalized gas producer speed (NGP) at 
100% is 8983 rpm and the power turbine (PTr) 8568 rpm. 
The PTr is mechanically coupled with a generator via an 
epicyclic reduction drive gearbox of 1800 rpm, thus providing 
a 4.76:1 speed reduction ratio. The engine is equipped with an 
electrical starter motor that has variable speed control. The 
starter aids the gas producer speed acceleration up to 65%, 
when it reaches self-sustainable speed and the automatic 
clutch is disengaged between the two.

Data was collected from an engine that has around 15,000 
operating hours and a time between overhauls of around 
30,000 hours. A typical engine compressor wash is carried 
out annually unless a significant loss of its performance 
is seen. This engine has a high flow, low pressure lube oil 
system. It has variable header pressure that depends on the 
engine compressor speed (this is to prevent ingress of oil from 
bearings into the engine). At idle speed, the pressure of the 
lube oil is set around 340 kPa and the temperature to 50°C. 
A diagram of the research object with the most important 
components is shown in Fig. 2. 

During the start-up process, the commands of individual 
actuators (BV_C, GV_C, FCV_C) as well as the measurement 
states (NPT, PTIT, NGP, PCD, FV_OP, IAT) change (Fig. 2). 
The state of the bleed valve (BV) opening at GT start-up 
determines the amount that enters the combustion chamber, 
the machine start-up characteristics and other derived states. 
The set BV_C value at the initial stage influences the process of 
closing the bleed valve to prevent surge in the compressor and 
PTr. The position of the BV_C valve depends on the NGP speed 
and the IAT temperature. The value of the closing state is 
inversely proportional to this measurement. Another actuator 
whose function is adjustable during the start-up phase is the 
variable guide vane (GV). Its position is fully closed, thus 
limiting the flow through the compressor as much as possible.

The GV_C controls the first four of the six stages of the 
compressor GV via a single actuator. Its position depends 
on the NGP and inlet air temperature (IAT) schedule map. 
After the NGP exceeds 80% of the set-point, the GV_C starts 
to open the actuator position. The GV position will also have 
an offset associated with the IAT. The GV_C will reach 100% 
at maximum engine power.

Fig. 2. Diagram of the research object with the most important components

The operation of the fuel control valve (FCV) is controlled 
by a low signal selector (LSS) type controller by selecting 
the smallest deviation value of the NPT and NGP and the 
maximum acceleration rate signals; the fuel output pressure 
to PCD pressure (FV_OP to PCD) control limits the fuel to 
compressed air ratio and the maximum combustion chamber 
temperature, which is limited based on an indirect PTr inlet 
temperature (PTIT) measurement. The NGP is a measured 
value and has a direct impact on the control of the entire 
turbine. The FCV, GV and BV values are reflected in the 
condition of the system (vibration level, compressor pressure - 
PCD). Another parameter that determines the available power 
of the GT unit is the pressure from the compressor (PCD). 
This is the discharge pressure of the 15-stage compressor 
with a pressure ratio of 17.8:1 raising the atmospheric air 
temperature to 400°C at full power.

As can be seen from the analysis presented in this section, 
the set of the BV_C in the system plays a significant role for the 
state of the other parameters. The position of the GV_C mainly 
depends on the compensated NGP speed. The NPT velocity 
is crucial for the generation unit, as its value after start-up 
must be at a fixed value of 100%. Graphs of the changes in 
the values of the discussed parameters during GT start-up 
are presented in Fig. 3. 
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Fig. 3. Selected parameters changes during the GT start-up

For evaluating the compressor condition in the analysed 
system, the PCD parameter is a very important attribute. 
It determines the available power of the generation unit. 
A parameter strongly related to the PCD is the IAF_DP. It 
describes the condition of the filter, which depends on the 
IAT, humidity, PCD, NGP, inlet filter condition, air pollution 
and operating hours of the engine. The FV_DP is the last 
parameter in the hierarchy. When combined with the fuel 
valve input pressure (FV_IP) value, the amount of fuel 
consumed by the engine can be evaluated.

description of the proposed 
approach

On the basis of the analysis of the turbine performance 
together with the start-up control system, the 7 most 
significant parameters of the estimation process can be 

distinguished: GV_C, BV_C, NPT, FV_DP, IAF_DP, FCV_C, 
PCD, and these parameters were used to build the reference 
model of the system (Fig. 4).

A hierarchical reference model architecture is proposed. 
The architecture of such a system is the result of the 
decomposition of the GT start-up parameters estimation 
system into a set of hierarchically connected individual 
estimators. First, the primary parameters are estimated, such 
as the GV_C and BV_C. These are parameters whose inputs are 
only raw readings from the engine. The estimation of primary 
parameters is realized by the higher set of modules in the 
hierarchy called primary estimators (Fig. 4). The remaining 
necessary parameters are estimated in a set of lower hierarchy 
modules, here called secondary estimators. The secondary 
estimation process covered parameters depending on the 
value of the primary estimates: NPT; FV_ DP; IAF_DP; 
FCV_C; PCD. They use real input signals (measurements from 
package), outputs from primary modules or the signals highest 
in the hierarchy such as the fuel valve inlet pressure (FV_IP), 
NGP, IAT, and PTr inlet temperature (PTIT). Outputs from 
the  AIF_DP, FCV_DP and all the other start-up parameters 
are available for predicting their value during the GT start-up 
to provide a new means of estimating the expected value vs 
the actual from the machine. The dotted green lines show the 
inputs to the secondary estimators that can use some inputs 
estimated by the primary estimator instead of reading these 
parameters from the GT.

The function of individual estimators, in both the primary 
and secondary layers, is performed by MLP type neural 
modules. The choice of system architecture was dictated by 
the analysis of the GT start-up system presented in section 2. 
A modular system approach allows for easy expansion, e.g., 
by adding more neural modules depending on the machine 
type and specific application. Each module in the hierarchical 
structure was modelled using an MLP network. All the 
implemented neural networks consisted of 4 hidden layers. 

Fig. 4. Diagram of hierarchical reference model of system (continuous lines - readings from IGT, dashed lines – readings estimated by ANN)
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An algorithm analogous to the back-propagation algorithm 
with the AdaGrad optimizer [24] was used to train the 
network. The network architecture in each module differed 
in the number of neurons. The M parameter is equal to the 
number of the inputs to each network. N, D and P equate to 
the numbers of neurons in consecutive hidden layers. The 
initial values of the weights are represented by the wi = [w1 
… wM] vector and were chosen randomly. The output signal 
can be expressed by the following equation:

The activation functions were selected as LeakyReLu f(x) 
and tanh h(x).

Training error was calculated as per the following equation:

where i = 1, … , n is the number of output samples (sample 
output).
Tab. 1. Neural networks configuration

Name Hidden 
Layer (I) 

Hidden 
Layer (II) 

Hidden 
Layer (III) Estimated Output 

FA tanh leaky_relu leaky_relu 

No.  
of 

neurons 

20 20 20 Guide Vane Command 
20 20 20 Bleed Valve Command 
50 50 50 Normalized Power Turbine Speed 
50 50 50 Pressure Discharge Compressor 
50 50 50 Fuel Valve Differential Pressure 
50 50 50 Fuel Valve Command 
50 50 50 Inlet Air Filter Differential Pressure 

 

siMulation

In the first stage of the research, neural modules were 
designed to estimate the system parameters. The neural 
modules were trained independently, using real measurement 
data read from the GT start-up system (Fig. 2) during its 
correct operation under normal conditions. Specially 
prepared sets of time series (200 samples with a 1-second 
resolution) were fed to the network inputs. 

After that, the modules (the trained networks) were 
combined into a hierarchical modular neural reference model 
to form a complete system (Fig. 4). The testing was performed 
for the whole system. This means that, first, the parameters 
were estimated in the set of modules of higher hierarchy 
(primary), and then the obtained values of the estimates 
served as inputs in the set of modules of lower hierarchy 
(secondary).

Selected variants for different compressor IATs are 
presented because this had the strongest effect on the 
characteristics. The inlet temperature ranges are typical 
for winter ambient conditions in the North Sea when the 
data was collected. Examples of GT parameter time courses 
during the neural module training phase are presented in 

Fig. 5. The solid line shows the actual run, the dashed line 
the estimated run.

After this first stage of the research, in the second step, the 
modules were combined into a hierarchical modular neural 
reference model to form a complete system (Fig. 4). 

a) PCD

b) FVC_C

Fig. 5. Plots of predicted (solid line) and estimated (dashed line) data

It can be observed for the selected two parameters in Fig. 
5 that the ANN can predict complex parameters such as the 
PCD and FVC_C (secondary estimators with at least 4 inputs) 
with a good accuracy. This could be attributed to the number 
of the training samples and intentionally narrow range of the 
IAT that was utilized to carry out the training and test. Some 
of the estimated trends deviate from the expected value, but 
this could be due to measurement error in the data set, too 
low resolution of the measurement or insufficient training 
data sets.

The system adjusted to different temperatures. The 
estimation proceeded correctly. The averaged training mean 
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square error was smallest for the GV_C and BV_C (order of 
10-2). The largest mean square error was obtained for the 
FCV_C (order of 2⋅10-1). Additionally, the model was tested 
in predicting all the designed parameters as per Fig. 6. The 
dashed line denotes the estimated data, the solid line the 
measured values analogous to previous plots (Fig. 5). 

Fig. 6. Plots of predicted (dashed line) and test (solid line) data

The error values obtained during the process of training 
and testing of the neural networks estimating primary 
parameters were comparable. However, in the case of 
secondary parameters, there was a noticeable difference, 
and for these parameters, slightly higher error values were 
obtained. This is due to the accumulation of errors in the 
modular structure. The availability of a wide range of input 
compressor IATs for the training data could increase the 
robustness of the system to disturbances. This would allow 
better estimation of the outputs for the experimental states.

conclusions

As shown in the paper, the authors adopted the principle 
of the modular structure of the GT start-up model. Individual 
modules have been designed to model the control of the value 
of working agent parameters at individual start-up phases. 
Their functions are similar to those of the controllers of the real 
machine. They are also responsible for the correct sequence 
of transition to subsequent phases, which explains why the 
model proposed by the authors must have a hierarchical 
structure. This ensures the creation of a universal modular 
base start-up model. In order to apply it to any other specific 
turbine, it is necessary only to update the neural modules or 
its structure. This is a novelty and advantage of the proposed 
pattern of the modular configuration.

The individual modules developed make direct use of the 
measurement data and outputs of the primary modules. The 
results prove that the modular GT start-up model can be 
easily used and gives good accuracy of neural calculation. 

At the same time, the modular system can be easily adapted 
to other types of power plant GTs and is more flexible in 
design and use. The designed system correctly estimates the 
start-up parameters of the GT. 

The obtained observations can help the operator monitor, 
locate the fault approximately, and take basic corrective action 
(continue operation, change parameters, report an alarm to 
the operator, schedule service, or emergency stop the machine) 
or decide to restart after the necessary delay. However, using 
a start-up model to fully identify and isolate turbine faults 
requires additional work to expand the reference system 
and the availability of experimental start-up models with 
confirmed faults, which will be a further stage of the research.
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