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1. Introduction  
 
This paper presents early stage of toolset 
development aimed for modeling conflict 
situation. Under game theory consideration sides 
of conflict traditionally called as players are 
interested to solve conflicting situations at their 
favor. Due to limited resources and reward pool, 
it is usually difficult or impossible to select a set 
of players’ decision leading to outcome optimal 
for everyone. Often one’s decision producing 
good outcome for him at the same time leads 
to worse outcome for another player.  

Conflicting games are almost certainly 
impossible to avoid. They happen in almost 
every aspect of life and cover situations from not 
material stakes like quality of entertainment 
through games with small material stakes to 
finally global conflicts deciding life and 
prosperity of whole nations. Some of them are 
solved with strength or dexterity and some with 
intelligence, knowledge or some different trait, 
possibly with mix of them. There is something 
exciting in rivalry, it is observable in sports or in 
popularity of card, board and computer games.  

This paper presents approach to modeling 
conflicting situations using game theory 
conceptions, computer simulation and machine 
learning. Game theory is mathematical study on 
modelling such situations with respect to made 
decisions and used strategies. Lately numerous 
games are the field of research of artificial 
intelligence leading to some serious 
optimizations and over performing human 
capabilities in solving these problems. Some 

of many interesting research is presented in: [1], 
[2], [3], [4], [5], [6], [7], [8].  

This paper is organized as follows: 
1. Brief introduction to game theory, 

it is concepts and definitions. 
2. Collection of requirements demanded from 

the tool. 
3. Presentation of current state of toolset. 
4. Appliance of toolset for two traditional 

game theory problems. 
5. Conclusion and indication of future 

directions of development. 
  

2. Game theory model 
 
Many game theory terms used in game theory 
are introduced  in [9], [10], a subset of them will 
be used in this paper, therefore these terms are 
clarified below. 
• Set of players: denoted with 𝒩 where  

|𝓝|  =  𝑵 
• Set of game states: set of possible game 

states, denoted with 𝑆. A subset of states 
with active player 𝑛 ∈ 𝒩 is denoted 𝒮𝑛. 

• A partition of set 𝑆 into family �̂� consisting 
of 𝑁 + 2 subsets: 
o 𝑆𝑛 ≠ ∅ a subset of game states when 

player n is in position to take an action 
defined for 𝑛 ∈ 𝒩; 

o 𝑆𝑒 is the set of leaf nodes, representing 
final state of the game with no further 
actions are possible; 

o 𝑆𝑐 is a set of states in which decision is 
made by model player nature or 
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chance – implementing randomness in 
the game, actions of chance are 
selected with some random 
distribution. Chance is rather part of 
game rules than actual player. 

• The partition hold properties: 
o 𝑆 = 𝑆𝑒 ∪ 𝑆1 ∪ …∪ 𝑆𝑁 ∪ 𝑆𝑐; 
o ∀a, b: 𝑆𝑎 ∩ 𝑆𝑏 =  ∅; 
o ∀𝑛 ∈ 𝒩:  𝑆𝑛 ≠  ∅, otherwise, game 

would not involve that player 
making game less than 𝑁 player. 

When game itself does not introduce 
randomness and its result is deterministic by 
action of regular players Sc = ∅. Generally, 𝑆𝑒 
could be empty for problems like infinite 
prisoner’s dilemma. However, endless games 
cannot be completely simulated. Many problems 
are defined to guarantee to reach finished state 
or there is explicit time or step limit for game 
when game is terminated in its current state. 
• Action set: a set of possible moves in the 

game. Set of all possible actions will 
be denoted 𝒜. The set of possible actions 
may differ (be limited) depending on the 
current game state. Set of actions possible 
set 𝑠 ∈ 𝑆 will be given by function: 

𝐴: 𝑆 → 2𝒜 
• Information set: A non-empty subset 

𝑊𝑛,𝑘 ⊆ 𝑆𝑛  of game states which are 
indistinguishable among each other by 
active player. If every information set has 
only one element, then player has the 
complete knowledge of the game – knows 
exactly in which state the game is in the 
moment of taking action. If information set 
has more than one element player lacks 
information to precisely indicate in which 
state the game is.  Obviously:  

∀𝑠𝑖, 𝑠𝑗 ∈ 𝑊𝑛,𝑘:𝐴(𝑠𝑖) = 𝐴�𝑠𝑗� 
• Payoff: A value 𝑟 ∈ 𝑅 measuring score of 

players in game. Usually payoff is simply  
a number, which out of the box provides 
properties such as: 
o total ordering of possible values; 
o ability to sum final payoff from partial 

(step) payoffs; 
o norm – estimation how much one 

payoff is better than other; 
In some specific game models payoff can be 
more complicated, for example it could be 
tuple of numeric values. Such models 
introduce additional complications, namely 
multi-objective optimization. Such cases 
demand custom defined preference model 
for payoffs, and relation of total ordering is 
not guaranteed. Generally, players can use 

different space of payoffs. In specific cases 
one player can use single numeric value and 
another consider several factors in tuple. 
Therefore, formally 𝑅𝑛 will denote space of 
payoffs for player 𝑛. 

• Policy: A function selecting an action 
(move) based on the state in which game is. 
Policy π𝑛 defined on the whole state set is: 
πn: 𝑆 → 𝒜 ∪⊥. No action is returned if 
player 𝑛 can not move in current game 
state. If domain is restricted to states in 
which player can move, then it is πn: 𝑆𝑛 →
𝒜. A set of possible policies of player 𝑛 
will be denoted 𝑃𝑛. 

 

3. Extensive-form games 
 
A N-player game in extensive form is defined 
with: 
• A set 𝒩 of N players. 
• A game tree - directed graph with root node 

representing initial state of the game. Nodes 
in the graph represent game states. Edges of 
the graph represent moves (actions) 
transforming game state to another. Graph 
is directed from root node to leaf nodes. 

• Partition of tree nodes subsets: 
𝑆𝑐 ,𝑆1, … 𝑆𝑁 ,𝑆𝑒 

• For each terminal node 𝑠𝑡 ∈ 𝑆𝑒 there is 
defined a tuple 𝐻𝑡 ∈ 𝑅1 × 𝑅2 × … × 𝑅N, 
containing rewards for respective players. 

 

4. Normal-form games 
 
Games in normal form do not define game tree, 
they do not recognize separate states of the game 
nor moves made by players in these states. 
Rather than that, games in normal form operate 
on higher level of abstraction using player 
policies as primitive component. While in 
extensive-form game payoffs were based on 
game states, and policies used to select actions 
leading to game evaluation states, in normal-
form games payoffs are defined based on 
policies. This is a different view, not as a player 
but rather from over the game, where the game 
and its properties are the target of research.  

A situation is tuple of policy selection by 
every player. A set of possible situations is 
given:  

𝑃 = 𝑃1 × 𝑃2 × … × 𝑃N 
A payoff for player 𝑛 is given with function: 

𝐻𝑛:𝑃1 × 𝑃2 × … × 𝑃N → 𝑅𝑛 
And 𝐻 = (𝐻1, … ,𝐻𝑁) is tuple of each player’s 
reward. 
The game itself is a tuple: 

𝑇 =  ⟨𝒩,𝑃,𝐻⟩ 
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5. Conception of multi agent situation 
modelling tool 

 
Presented approach aims at delivering toolset for 
modelling games between numerous players. 
The following principles are considered in tool 
development process: 
• Support games with asymmetric players – 

with different set of actions and 
representation form of information set. 

• Compatibility with game theory terms. 
• Modular construction allowing elastic 

replacement of information set 
representation forms and policies. 

• Scalability for growing number of modelled 
players. 

• Possibility of building distributed 
simulation. 

• Delivery of reinforcement learning oriented 
features. 

• Error awareness – with maximalizing type 
and memory error detection during compile 
time and detection of errors occurring 
during run time. 

• Implementations should be possibly generic 
or dynamic.  

• Attention for performance with respect for 
scalability. 

• Support arbitrarily delivered payoffs 
calculated with shared rules and custom 
score calculations for individual players 
using nonstandard scoring method. 

 
6. Overview of proposed solution 
 

For development of proposed toolset, the 
Rust language was selected. Rust is often used in 
backend solutions in data science, due to its 
performance and safety. Language supports 
generic types for template implementations and 
late-binding types for situations where run-time 
flexibility is needed. Type compatibility and 
instance lifetime is checked during compilation, 
therefore model execution can be effectively 
secured from null-pointer and method not found 
errors. Moreover Rust allows pattern matching 
against enumeration types and asserts that every 
pattern branch is checked, minimalizing risk 
of forgotten case in implementation. 

Recently described elements of game theory 
are usually represented by types implementing 
respective traits. Implementing trait for type 
enforces implementation of methods listed 
in trait, creating compatibility interface for that 
type. Shared behavior is implemented for 

generic types with annotations to implement 
needed traits. 

The workflow model consists of the 
environment and a number of players – called 
agents. Environment and agents run in separate 
threads. The role of environment is to be game 
order enforcer and to keep track of actual game 
state. Agents communicate with the environment 
informing it about selected actions or occurred 
errors. Environment receives action selection 
from agents and transforms game state to new 
one. After resolving agent’s actions environment 
issues updates for selected agents. Important role 
for environment is also reaction to errors. 
Depending on implementation it could propagate 
errors to every agent and stop the game or try 
to recover from error. 

Communication between agents and 
environment is made with generic 
communication medium. Different agents are 
not bound to use the same communication form 
– some can use inter thread channels and some 
(remotely connected) use some form of network 
communication. 

Agents and environment work in concurrent 
model, not necessarily working in parallel.  
The environment usually waits for a message 
from any agent to process idling between. 
Agents process observations received from the 
environment (parallelly). When one agent is 
selected to play, he evaluates his next 
move, in the meantime other players may stay 
idle or could be finishing recent updates and 
potentially doing some heavy pre-computation 
for next move. Current implementation uses 
Rust’s built in synchronous concurrency model, 
however for future works may lead 
to development of asynchronous model. 

 
7. Domain parameters 
 
Model implements workflow with generic types, 
allowing players to use different communication 
mediums, information set representation and 
policy types. However, in order to communicate 
with environment a set of agreed parameters are 
needed to be introduced for protocol purpose. 
Such domain parameters are represented  
as struct implementing following trait: 
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This trait itself does not introduce any methods, 
however, requires pointing in types used 
in communication in framework. The code 
snippet may be confusing for readers not 
familiar with Rust. The code introduces a trait 
(interface) named DomainParameters with 
requirement to also implement traits Clone, 
Debug, Send, Sync – mainly because further 
defined types must also implement these. 
Domain parameters include following types: 
1. ActionType - the data structure that will be 

sent by agent to environment. This does not 
necessary mean that every agent has the 
same set of actions, only that every possible 
action produced by agent will be 
understood by environment. For 
compilation level assurance it is 
recommended to implement it statically 
using enum structure. Another option 
would be using data structure that could be 
parsed by environment e.g. String 
containing JSON serialized action, this 
approach while giving more flexibility 
introduces possibility of desterilizing errors 
during applying action that cannot be 
prevented during compilation time. 
ActionType must implement Action trait, 
this trait does not introduce new methods, 
however it combines required super-traits. 

2. GameErrorType type used in specific 
modelled game to represent internal error. 
These types of errors are caused during 
processing game rules and thus must be 
implemented alongside game rules.  

3. UpdateType represents data that is sent by 
environment to agents. And analogous rule 
applies that it must understandable by every 
agent. Similarly static enum or struct 
type is preferred, and serialized data 
possible with awareness that it could 
potentially cause problems when agent 
cannot deserialize correctly during applying 
update to his information set. 

4. AgentId represents identification token for 
player, among other typical in this context 
traits AgentId must implement Hash and 
Eq traits so they can be stored in HashMap. 

IDs should be unique in one game, this is 
required proper communication channel 
is selected by these IDs. 

5. UniversalReward represent payoff type 
that is distributed by environment to agents. 
In certain use cases, agents would like to 
track their score during game progress, 
therefore this type need to be addable. 
Traits Send and Sync are traits marking 
types safe to send across threads 
respectively with transferring ownership 
and by reference. Usually, these traits are 
automatically implemented for created 
structs if their internal attributes are Send 
and Sync respectively. Data types usually 
implement these traits. Trait Clone requires 
method clone() and represents type that 
can be duplicated. Usually, this trait can be 
automatically derived via macro and 
similarly Debug trait allowing verbose text 
representation of structure. 

 
8. Error handling 
 
Errors types are organized in tree structure using 
enumeration types. Ideally errors should cover 
every incorrect situation in the model. Some 
errors may be caused by specific game rules – 
what suggest that state transition or policy could 
be implemented incorrectly. Other kind of errors 
are caused by malfunction of the model itself – 
wrong data serialization, early exit in one of the 
thread, wrong condition of communication 
channel. Top level categories of errors are: 
1. communication misfunction, 
2. violating game protocol, 
3. data conversion, 
4. game rule error. 

Currently errors are handled by logging the 
event, propagation to other entities and exiting 
model execution. In future cases with 
recoverable errors are planned to be handled. For 
example, playing illegal action can be noted in 
dedicated event stash and fouling player asked to 
choose different action. This may be especially 
useful for agents learning rules of the game via 
reinforcement learning – episode could run 
forward with correct step while wrong step along 
with penalty can be added later to learning data 
set. 

Proper error definition, along with verbose 
description of cause helps building and 
debugging models, therefore the list of possible 
errors will likely expand in the future. 
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9. Communication channels 
 
Basic form of communication is channel 
between two structures implementing 
symmetrically trait BidirectionalEndpoint. 
For every player one port for communication 
with environment must be constructed with 
paired port for environment to communicate 
with this agent. Every endpoint has specified 
Outward and Inward types that determine what 
messages are sent and received with it. Agent 
will have port with inward type matching 
environments message and outward type 
matching his message to environment. Paired 
endpoint in environment will have these types 
reversed. Environment and agent messages are 
generic types specified with domain parameters. 
Environment message is enum with the most 
important variants: 
1. YourMove – to inform player that it is his 

turn to move. 
2. GameOver – to inform player that the game 

is over. 
3. StateUpdate(UpdateType) to inform 

player about his game state change with 
regard to that player perspective. Within 
this message there is domain’s update 
structure aggregate. 

4. ErrorNotify(AmfiError) – to 
communicate error (main error type is 
described in previous section). Error is 
aggregated with this message. 

There are several other variants, but these 
make core of game flow. Analogously the 
agent’s message is enum consisting of variants: 
1. TakeAction(ActionType) – message sent 

by agent with aggregated game action. 
2. NotifyError(AmfiError) – information 

about occurred error sent by agent to 
environment.  
Included standard implementation uses 

Rust’s standard mpsc::channel for efficient 
communication between threads. There exists 
experimental TCP/IP implementation using 
binary data serialization, and in future there are 
planned http-based ports (using JSON or grpc) 
data serialization. 

Network communication allows federating 
players to separate physical machines increasing 
scaling potential. The drawback however is that 
data needs to be serialized by sender and 
desterilized by receiver, unlike as in single 
program communication where structures can be 
sent between threads (provided that they 
implement Send trait which is automatically 
derived for majority of types). This additional 
data operation introduces additional processing 

and combined with network latency slows down 
the model. Therefore, local model launch is 
preferred for performance purposes, 
if machine can run all players. 

Currently the following three concepts 
of orchestrating communication are considered: 
1. Environment is connected to every agent 

with separate bidirectional communication 
channel. The advantage of this solution is 
it’s conceptual simplicity, as environment 
has set of independent channels which can 
be randomly accessed on demand, moreover 
channels can be wrapped in dynamic 
structures making it easier to communicate 
with different agents using different types 
of channels. The drawback of this solution 
is problem of selecting listening channel in 
environment. Environment should listen to 
all agents (any one can communicate some 
error message), this requires switching 
channels to listen on when idle – 
introducing potential performance 
problems. Current default switch strategy is 
round robin, checking if there is message 
queued from certain agent and switching to 
next if none was found. 

2. Environment groups agents and use single 
port for listening messages from them and 
individual ports to send to them. This 
conception is optimized for local agents as 
it utilizes Rust’s natural mpsc::channel 
(multi producer – single consumer). The 
advantage of this concept is performance in 
local environments and simplicity in 
implementation as long as mpsc channel is 
the only one used. The drawback is 
difficulty to use it alongside bidirectional 
channels (e.g. TCP streams) – in this case 
listening switching must be performed – 
similarly to previous conceptions with 
separate bidirectional channels. 

3. Another conception – however not yet 
implemented is using listening dispatch 
thread. Listening dispatch would run along 
environment and collect messages from 
agents and then queuing them into single 
queue. Saving operational time environment 
would use to switch between channels.  
The concept will be object of future work. 

 
10. Policy 
 
Automatic player implementation requires 
implementing some policy to choose actions 
based on current game state (actually 
information set as player does not have complete 



Robert Jarosz, Proposition of multi-agent conflict situation simulation and reinforcement learning… 

 18 

information about state in general). The trait for 
such type is given: 
 

 
 
Policy has one associated type, which is 
information set it works on and one method that 
given the instance of information set selects 
proper action as Some(action) or None where 
no action is available. The important detail about 
policy trait is that it is compatible only with 
declared information set type. However, this 
type may be set generic as long as said generic 
type has proper interface for policy 
implementation. 
 

 
 
Such structure allows generic implementation of 
actor-critic policy for  information sets that 
can be translated to tensor and ActionType 
specified in domain parameters can be 
constructed using integer index (actor network 
outputs integer that must be interpreted as 
action). 

Ensuring that used information set can be 
converted to tensor could be done by requiring 
from it to implement Into<Tensor>. However, 
for research purpose one may implement one 
information set and experiment with different 
conversion ways to Tensor. Therefore, 
requirement is made to implement 
ConvertToTensor<InfoSetWay> where 
InfoSetWay represents a method of conversion 
(what data is considered, how it is structured and 
potentially normalized). For example, given 
some information set 𝑠1 that gives player 
information about strict observable at the 
moment facts, some facts observed in the past 
and some synthetic probabilistic assumptions 
about not known state parameters. Researcher 

might be interested in comparing effectiveness 
of policy using certain observable facts with 
policy using additionally previous observations 
or even analytically processed data for example 
“considering enemy previous actions 𝑎1,𝑎2, … 
probability that in current game state enemy has 
asset 𝑥 is 𝑝”. In this case agent is interested in 
developing different conversion forms for the 
same information set, and to feed differently 
shaped neural network.  
 
11. Payoffs 

 
Payoffs in the model represent two independent 
concepts: 
1. Payoff provided by central environment. 
2. Payoff provided by agent’s information set. 
First type of payoff is provided with definition 
of game rules. The central environment can 
calculate players’ payoffs and communicate it to 
agents. It can be implemented in two 
approaches: 
1. Play the game to one of the final states and 

then send whole payoffs to agents - this is 
intuitive for general games (when 
intermediate rewards are not necessarily 
defined). 

2. Provided that in the game partial payoffs 
are defined it can be partially distributed 
during game, and the final payoff is sum of 
intermediate rewards [12], [13]. This is 
often used in reinforcement learning 
techniques like 𝑄-learning [14] policy 
gradient methods  or actor-critic based 
methods [15].  

The subjective payoff is calculated by the agent 
itself based on his information set. This 
approach is strictly technical because different 
calculation method actually means the different 
game was played. This is used to model some 
irrationality of the player or the fact that he 
actually plays different game. An example of an 
application could be the following:  

Let there be a board game for 3 players 
with strict rules on how to count points at the 
end of the game. Player A is not interested in 
winning, rather he would like see player B lose 
spectacularly so he does not mind playing in the 
way to help player C. As player’s A objective is 
different than described in game rules, he plays  
a different game, the game is different also for B 
and C. However rather than implementing 
different games for each interesting irrationality 
it would be easier to change the agent’s payoff 
perspective. 

This self calculated payoff is represented by 
trait SelfAssessment and as stated before  
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I is not distributed by environment and must be 
calculated by agent based on current information 
set state. For models that do not need such 
evaluation it could be set to empty type and not 
be considered at all. 
 
12.  Using reinforcement learning to 

optimize policies 
 
Reinforcement learning methods optimize action 
selection with respect to current state. Practically 
agents choose action and remember how certain 
actions change the final payoff after the game. 
Some policies, commonly known as critic type 
policies try to evaluate action by predicting how 
will it impact the final payoff. Popular critic 
policy is DQN – deep Q-learning network that 
learns to predict the final outcome of action 
given with equation: 

𝑄∗(𝑠,𝑎) = 𝐸 �𝑟 + γ max
𝑎′

𝑄∗(𝑠′,𝑎′) � 
Where 𝑠 is current state (information set) and 𝑎 
is an evaluated action. The outcome of function 
is prediction of summed next instant reward 
(change in payoff) and discounted sum of future 
rewards – usually reduced with discount factor 
γ <  1 ensuring that algorithm converge to finish 
game due to inflation of payoffs. The action with 
the best expected payoff is chosen. 

Another type of policies are actor type 
policies that selects action internally, that is 
given the state 𝑠 alone output selected action. 
Usually, such policies implemented with neural 
networks output some categorical distribution of 
actions to be taken, and then the action is 
sampled (or the one with the greatest probability 
is chosen). 

A hybrid methods are also possible, the 
popular option is actor-critic method introducing 
two neural networks – one generating actions 
distribution and the other one evaluating selected 
action. Example of such method is Actor Critic 
with advantage baseline (A2C). 

Regardless of the choice of learning 
algorithm, agent must collect history of the game 
played, this history must contain information set 
(state) in which he has taken action, the taken 
action and data to assess taken action. 
In presented framework a following structure is 
proposed: Single episode (one game) is saved as 
a trajectory – a list of  trace steps. Each trace 
step consists of: 
• Information set; 
• Taken action; 
• Reward from environment; 
• Reward based on self evaluation. 

With steps ordered chronologically one can 
calculate future payoff by summing and 
discounting rewards for the next steps. Several 
episode trajectories are collected into batch, 
which is after certain number of episodes used to 
update policy. The library implements generic 
agent that collects the trajectory. Without 
collected trace agent cannot update policy, 
however it may be optimal solution for not 
learning agents as trajectory collection consume 
compute resources and memory. 

In the current state of toolset two generic 
learning policies are implemented (DQN and 
A2C) with more to be in the future. The policies 
are generic however some constraints must be 
met to use them. Firstly, one must provide neural 
network shape, and secondarily some type 
conversions are needed. For both of these 
policies information set must be convertible to 
Tensor type, for Q-learning also an action type 
must be convertible to Tensor. For the A2C 
policy action must be constructed from integer 
index, as policy chooses action number, then this 
number is to be converted to action. 
 
13. Application in prisoner dilemma 
 
Prisoner’s dilemma is well known problem in 
game theory. It is two-player game, in which 
both players simultaneously choose to defect the 
other one or cooperate with him. In this game 
choosing to defect other player pays better than 
cooperating in single game regardless of the 
other playerschoice. 

 
Tab.1. Prisoner dilemma payoff table 

 

 cooperate defect 

cooperate  5  10 
5  1  

defect  1  3 
10  3  

 
There is a variant of this problem that repeats 
choice for 𝑛 rounds. While in single game 
episode it is better for player to make defect 
move, in iterated problem it may be better for 
both players to agree on cooperation. Yet when 
the number of iterations is constant and known, 
player may decide to defect in the last round as it 
cannot be punished in the future rounds. As the 
other player may think in similar way, both can 
conclude that the last round will be defect on 
both sides and similarly think about previous 
round. If in the last round player is being 
betrayed anyway, he may choose to betray in 
previous round because it is now last relevant 
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round. Iterating this logic to backwards players 
may conclude that they should start moving with 
defect in first round. This analytic method is 
called reverse induction.  

Practically there exist strategies that score 
better in iterated prisoner’s dilemma. These 
strategies assume that the other player can be 
influenced to select cooperative actions and then 
both players could benefit from it. Such 
strategies feature punishment for other player’s 
defect moves, however, to avoid remaining in 
defect-defect equilibrium punishing player under 
certain circumstances forgives other. This way 
the second player is taught that he can score 
more if he cooperates. To demonstrate this 
feature of the game three models have been built 
and simulated: 
1. Two agents playing against each other, 

learning their policies. 
2. Two agents playing against each other, with 

one of them learning and the other one 
using fixed policy to start punishing if 
opponent defected in last two subsequent 
rounds and forgive when opponent 
cooperated for two previous rounds. 

 
Chart 1. Two agents learning simultaneously 

 
The experiment with two learning agent 

converges to Nash’s equilibrium in defect-
defect, and both of players scoring about 30 in 
10 rounds. 

 
Chart 2. Learning against agent punishing for defect 

and waiting for two subsequent cooperations  
to forgive 

 
When one agent does not learn and instead 

uses certain punishing strategy it is possible for 
model to converge to different results. On Chart 
2 it may be seen that punishing agent achieves 
scores above 40 and learning above 50.  

These models utilize classic reinforcement 
learning conception that reward is provided by 
environment. As it can be read from charts two 
learning agents converge to always defect policy. 
On the other hand, models with one fixed policy 
show that by keeping some punishing-forgiving 
policy it is possible achieve payoffs better for 
both players. This observation may lead 
to question if it possible for agents to achieve 
these strategies with learning. It may be possible 
that modifying the reward function and therefore 
optimalization target would lead to achieving 
better global payoff.  

An attempt to construct model with second 
agent learning with optimizing different function 
is proposed. Two models have been built, in 
both first agent is normal learning agent using 
rewards distributed by environment. The second 
agent learns, but maximize different payoff 
function: 
1. a combination of table payoff with count of 

cooperations made by first player; 
�̂� = 𝑟 + 𝑎𝑐  

2. a combination of table payoff with heuristic 
assessment of punishment effectiveness. 
�̂� = 𝑟 + 𝑎ℎ 
Unfortunately, these models did not result 

in second agent learning punishing strategy. Yet 
the experiment allowed to construct a hypothesis 
about necessary condition to construct punishing 
strategy via learning. In the proposed model 
reward �̂� = 𝑟 + 𝑎𝑐 is historyless, meaning  
it does not include historic data and therefore it 
can be used to construct new single round payoff 
table, as every time the opponent makes 
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cooperate action it adds to defined payoff – such 
defined reward leads to new Nash’s equilibrium 
but actually does not introduce any new 
information to develop punishing strategy.  

 
Tab. 2. Modified payoff table for prisoner dilemma 

 

 cooperate defect 

cooperate  5  10 
5+a  1  

defect  1  3 
10+a  3  

 
The second model introduces new problem, 
namely, how to measure effectiveness of 
punishment. Intuitively punishment is successful 
when after enemy defected, player defects and in 
the subsequent round opponent switches to 
cooperation. This assessment can be combined 
with game defined rewards and produce new 
self-assessed payoff. Unfortunately, these 
models does not introduce successful 
assessments. Future experiments will use 
different punishment evaluations and hopefully 
punishing strategy could be achieved via 
learning. 
 
14.  Application in replicator dynamic 

problem 
 
To demonstrate game with larger number of 
players the following experiment is proposed. 
Prepare game for 𝑁 players (10, 100, etc). In the 
game in 𝑀 rounds players are paired randomly 
and each pair plays chicken (hawk-dove) game 
with the following payoff table: 

 
Tab. 3. Chicken game payoff table 

 

 dove hawk 

dove  2  4 
2  1  

hawk  0  0 
4  0  

 
In single game every player should face 

several encounters with random other player to 
play a round of chicken game. His final payoff is 
sum of round payoffs. Players will use adaptive 
policies - learnt by repeating main game many 
times. Theoretically this particular game variant 
played in adaptive population should result in 
2/3 players playing hawk and 1/3 playing dove. 
Learning agents use advantage actor critic 
method. Model can be built with only learning 
agents or can be populated with some not 
learning agents – e.g. realizing pure dove and 
hawk strategies. Several population models have 

been run. The following charts depict learning 
process in model constructed with 20 learning 
agents, 5 fixed on pure hawk strategy and 5 pure 
dove strategy. In this example model should 
converge to have average 20 hawks and 10 
doves, and with 20 learning agents 5 of them 
should become doves and 15 hawks (ratio is 
1/3). 

 
 
Chart 3. Evolution of taken actions by learning agents 

in multi-agent chicken game 
 
As seen on the chart learning agents tend to 
choose dove about 2.5 times in ten rounds and 
7.5 hawk. That result is coherent with 
expectation. The following chart represents 
evolution of average payoffs per group of 
agents. 

 
Chart 4. Evolution of payoffs in multi-agent chicken 

game 
 
15. Future works 
 
The simulation and learning  framework is in 
early stage of development. Future works will be 
focused on several aspects: 
• improving communication model to 

improve performance of models with many 
agents, optionally proposition of 
asynchronous solution to be provided, 
benchmarking performance of implemented 
communication algorithms; 
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• reviewing trajectory tracking structure to 
optionally include information about 
information set transition; 

• implementing more learning algorithms; 
• developing models depicting more complex 

conflicting problems; 
• implementing features making model 

construction and data collection easier. 
 

16. Summary 
 
The toolset is ready to build models, which was 
demonstrated with classic game theory 
problems. Learning models utilizing classic 
reinforcement learning approach are supported.  

Decentralization of models is not yet 
supported out of the box. There is trait system 
allowing generic communication channels using 
round robin polling for messages. However no 
stable network communication channels are 
ready.  

The code of the library and examples are 
published under MIT license and can be viewed 
at [11]. The version of software in the moment  
is 0.1.0. 

Presented models while not introducing any 
novelty to common knowledge are useful to test 
current state of work and expose some problems 
that might be addressed in the future.  
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Propozycja narzędzi do symulacji i uczenia maszynowego w sytuacjach 
konfliktowych z udziałem wielu stron wraz z demonstracją wczesnej wersji 

implementacji. 
 

R. JAROSZ 
 
W artykule opisano koncepcję biblioteki do symulacji interakcji między graczami rozpatrującymi sytuacje 
konfliktowe. Opisano w nim założenia, w tym wymagania funkcjonalne dla oprogramowania. Przedstawiono 
proponowane rozwiązanie i wstępną wersję implementacji wraz z przykładami zastosowania koncepcji  
w klasycznych problemach teorii gier.  
 

Słowa kluczowe: teoria gier, symulacja, uczenie ze wzmocnieniem, optymalizacja strategii, gry wieloosobowe. 


